簡易檢索 / 詳目顯示

研究生: 劉錚
Liu, Cheng
論文名稱: 二維有機-無機鈣鈦礦 PEA2PbBr4單晶薄膜之光學特性研究
Fundamental Optical Characteristics of Two-Dimensional organic-inorganic perovskites (PEA)2PbBr4 single crystal
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 51
中文關鍵詞: 二維鈣鈦礦單晶激子極化子色散關係
外文關鍵詞: Two-dimensional (2D) perovskite, single crystal, exciton polariton, dispersion relation
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來鹵化鉛鈣鈦礦因為其優秀的光電響應,使其在太陽能電池、發光二極管 (Light Emitting Diode, LED)、雷射等光電元件的開發備受關注。其中二維有機-無 機鈣鈦礦因為其對於水以及溫度的穩定性遠超過三維鈣鈦礦,使其具有更高的商業 化潛力。並且因為其結構的特殊性,使其自行成多重量子井結構並將激子受限於的 二維無機層中,並產生較大的激子束縛能,使我們可以在室溫下研究激子-極化子 (Exciton-Polariton) 的現象。
    在這項工作中,我們通過溶液法輕鬆的合成了二維有機無機鈣鈦礦單晶薄膜 PEA2PbX4 (phenethylamine PEA, X = Br, I),並分析二維鈣鈦礦的基本的光學特性。 因為二維鈣鈦礦的結構特性,使其自然形成法布里-佩羅光學腔 (Fabry–Pérot Cavity) 並表現出明顯的腔極化子模式。並且從激子-極化子耦合的能量-向量 (E-k) 色散關係評估拉比分裂能量 (Ω) ,其中 PEA2PbBr4 的拉比分裂能量約為 304 meV, 而 PEA2PbI4 的拉比分裂能量約為 242 meV。藉由研究層狀二維鈣鈦礦的激子極化 子特性,使其可能在強光-物質相互作用區域中應用為極化子元件。

    In recent years, lead halide based perovskites have been widely used in the development of optoelectronic device such as solar cells, light emitting diode (LED), and laser, due to their excellent photoelectric response. In addition, the stability of twodimensional (2D) organic-inorganic perovskite to water and temperature is greater then three dimensional (3D) perovskites, and because of its particular structure, a natural multiple quantum well can be formed, which confines the excitons in the 2D inorganic layer. As a result, the exciton binding energy could be higher than the thermal energy of room temperature, which allows us to study the phenomenon of exciton-polariton at room temperature. In this work, we synthesized 2D organic-inorganic perovskite single-crystal thin films PEA2PbX4 (X=Br, I) by solution method and employed X-ray diffraction measurements to study the crystal structure, and analyze the fundamental optical properties of 2D perovskite material by photoluminescence (PL) and Time-Resolved Photoluminescence (TRPL) measurement. The morphological results show that we have successfully grown perovskite single crystals of hundreds of micrometers. The Rabi splitting energy fitting from the calculated energy-wavevector dispersion (E-k dispersion) curve of PEA2PbBr4 and PEA2PbI4 are 304 meV and 242 meV. Compared with other processes to grow single crystals of perovskite, our results are much larger, which mean that we can grow single crystals with higher crystal quality.

    摘要 I 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 1 第一章、緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 鈣鈦礦 2 1.2.2 二維有機-無機鈣鈦礦 6 1.2.3 極化子 ( Polariton ) 8 1.3 實驗動機 10 2 第二章 基礎理論 11 2.1 二維鈣鈦礦的材料特性 11 2.1.1 結構特性 11 2.2 光學性質量測 12 2.2.1 光致發光 12 2.2.2 拉曼光譜 14 2.3 光與物質的交互作用 15 2.3.1 激子-極化子(exciton polariton) 15 2.3.2 激子-極化子耦合的色散關係 16 3 第三章 實驗架構 19 3.1 二維鈣鈦製備 19 3.2 材料形貌及結構分析 21 3.2.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 21 3.2.2 X光繞射儀(X-ray Diffractometer, XRD) 22 3.3 光學特性量測 24 3.3.1 光致發光(Photoluminescence, PL)系統 24 3.3.2 時間解析光致發光系統( Time-Resolved Photoluminescence, TRPL) 25 3.3.3 吸收光譜 27 3.3.4 拉曼光譜量測 28 4 第四章 結果與討論 29 4.1 表面形貌以及結構組成 29 4.1.1 光學影像以及SEM影像 29 4.1.2 表面粗度儀 31 4.1.3 X光繞射儀(XRD)分析 32 4.2 基本光學特性量測 33 4.2.1 PL及吸收光譜 33 4.2.2 穩態PL量測 34 4.2.3 變溫PL光譜 36 4.2.4 變溫拉曼光譜 37 4.2.5 時間解析PL光譜 39 4.2.6 單晶薄膜激子極化子特性量測 40 5 第五章 結論與未來工作 46 5.1 結論 46 5.2 未來工作 47 參考文獻 48

    1. McMeekin, D.P., et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016. 351(6269): p. 151-155.
    2. Stoumpos, C.C., et al., Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials, 2016. 28(8): p. 2852-2867.
    3. Raghavan, C.M., et al., Low-Threshold Lasing from 2D Homologous Organic-Inorganic Hybrid Ruddlesden-Popper Perovskite Single Crystals. Nano Lett, 2018. 18(5): p. 3221-3228.
    4. Huang, Y., et al., The intrinsic properties of FA((1-x))MA(x)PbI(3) perovskite single crystals. Journal of Materials Chemistry A, 2017. 5(18): p. 8537-8544.
    5. Li, M.H., et al., Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process. Adv Mater, 2018. 30(30): p. e1801401.
    6. Xing, J., et al., High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. Acs Nano, 2016. 10(7): p. 6623-6630.
    7. Qin, C., et al., Triplet management for efficient perovskite light-emitting diodes. Nature Photonics, 2019. 14(2): p. 70-75.
    8. Su, R., et al., Room-Temperature Polariton Lasing in All-Inorganic Perovskite Nanoplatelets. Nano Lett, 2017. 17(6): p. 3982-3988.
    9. Qin, C., et al., Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020. 585(7823): p. 53-57.
    10. Wang, S.B., et al., Multifunctional 2D perovskite capping layer using cyclohexylmethylammonium bromide for highly efficient and stable perovskite solar cells. Materials Today Physics, 2021. 21.
    11. Abate, A., et al., Supramolecular Halogen Bond Passivation of Organic-Inorganic Halide Perovskite Solar Cells. Nano Letters, 2014. 14(6): p. 3247-3254.
    12. Chen, Q., et al., Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015. 10(3): p. 355-396.
    13. MØller, C. H. R. "Crystal structure and photoconductivity of caesium plumbohalides." Nature 182.4647 (1958): 1436-1436.
    14. Weber, Dieter. "CH3NH3PbX3, ein Pb (II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb (II)-system with cubic perovskite structure." Zeitschrift für Naturforschung B 33.12 (1978): 1443-1445.
    15. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-+.
    16. Jung, H.S., et al., Flexible Perovskite Solar Cells. Joule, 2019. 3(8): p. 1850-1880.
    17. Best Research-Cell Efficiency Chart. 2022.
    18. Ruddlesden, S. N., and P. Popper. "New compounds of the K2NiF4 type." Acta Crystallographica 10.8 (1957): 538-539.
    19. Ruddlesden, S. N., and P. Popper. "The compound Sr3Ti2O7 and its structure." Acta Crystallographica 11.1 (1958): 54-55.
    20. Smith, I.C., et al., A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem Int Ed Engl, 2014. 53(42): p. 11232-5.
    21. Lai, H.T., et al., Organic-Salt-Assisted Crystal Growth and Orientation of Quasi-2D Ruddlesden-Popper Perovskites for Solar Cells with Efficiency over 19%. Advanced Materials, 2020. 32(33).
    22. Tsai, H.H., et al., High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016. 536(7616): p. 312-+.
    23. Blancon, J.C., et al., Scaling law for excitons in 2D perovskite quantum wells. Nature Communications, 2018. 9.
    24. Liu, Y., et al., Surface-Tension-Controlled Crystallization for High-Quality 2D Perovskite Single Crystals for Ultrahigh Photodetection. Matter, 2019. 1(2): p. 465-480.
    25. Lei, L., et al., Efficient Energy Funneling in Quasi-2D Perovskites: From Light Emission to Lasing. Adv Mater, 2020. 32(16): p. e1906571.
    26. Van Buskirk, P.C., et al., Common and unique aspects of perovskite thin film CVD processes. Integrated Ferroelectrics, 1998. 21(1-4): p. 273-289.
    27. Gu, Z.K., et al., A general printing approach for scalable growth of perovskite single-crystal films. Science Advances, 2018. 4(6).
    28. Zhang, X., et al., Exciton-Polariton Properties in Planar Microcavity of Millimeter-Sized Two-Dimensional Perovskite Sheet. ACS Appl Mater Interfaces, 2020. 12(4): p. 5081-5089.
    29. Davis, Kendall B., et al. "Bose-Einstein condensation in a gas of sodium atoms." Physical review letters 75.22 (1995): 3969.
    30. Jacek Kasprzak, Murielle Richard, S Kundermann, A Baas, P Jeambrun, Jonathan Mark James Keeling, FM Marchetti, MH Szymańska, R André, and JL Staehli, Nature 443 (7110), 409 (2006).
    31. K Łempicka, M Furman, M Muszyński, M Król, A Wincukiewicz, K Rechcińska, R Mazur, W Piecek, M Kamińska, and J Szczytko, presented at the Laser Science and Technology, 2019 (unpublished).
    32 Rui Su, Sanjib Ghosh, Jun Wang, Sheng Liu, Carole Diederichs, Timothy CH Liew, and Qihua Xiong, Nature Physics 16 (3), 301 (2020).
    33. Gu, Zhenkun, et al. "A general printing approach for scalable growth of perovskite single-crystal films." Science advances 4.6 (2018): eaat2390.
    34. Guo, R., et al., Synthesis and Photoluminescence Properties of 2D Phenethylammonium Lead Bromide Perovskite Nanocrystals. Small Methods, 2017. 1(10).
    35. Soe, C.M.M., et al., New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH2)(3))(CH3NH3)(n)PbnI3n+1: Structure, Properties, and Photovoltaic Performance. Journal of the American Chemical Society, 2017. 139(45): p. 16297-16309.
    36. Su, R., et al., Perovskite semiconductors for room-temperature exciton-polaritonics. Nature Materials, 2021. 20(10): p. 1315-1324.
    37. Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341-344.
    38. Umebayashi, T., et al., Electronic structures of lead iodide based low-dimensional crystals. Physical Review B, 2003. 67(15).
    39. Su, R., et al., Perovskite semiconductors for room-temperature exciton-polaritonics. Nat Mater, 2021. 20(10): p. 1315-1324.
    40. Hui Deng, Hartmut Haug, and Yoshihisa Yamamoto, Reviews of modern physics 82 (2), 1489 (2010).
    41. JM Gérard, B Sermage, B Gayral, B Legrand, E Costard, and V Thierry-Mieg, Physical review letters 81 (5), 1110 (1998).
    42. Hirvonen, Liisa M., and Klaus Suhling. "Wide-field TCSPC: methods and applications." Measurement Science and Technology 28.1 (2016): 012003.
    43. Schmidt, T., K. Lischka, and W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys Rev B Condens Matter, 1992. 45(16): p. 8989-8994.
    44. Varshni, Yatendra Pal. "Temperature dependence of the energy gap in semiconductors." physica 34.1 (1967): 149-154
    45. Li, C.-C., et al., Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation. Diamond and Related Materials, 2017. 74: p. 119-124.
    46. Dhanabalan, Balaji, et al. "Directional anisotropy of the vibrational modes in 2D-layered perovskites." ACS nano 14.4 (2020): 4689-4697.
    47. Griffiths, D.J., Introduction to electrodynamics. 2005, American Association of Physics Teachers.
    48. Symonds, C., et al., Emission of hybrid organic-inorganic exciton/plasmon mixed states. Applied Physics Letters, 2007. 90(9).

    下載圖示 校內:2025-11-23公開
    校外:2025-11-23公開
    QR CODE