簡易檢索 / 詳目顯示

研究生: 余紘毅
Yu, Hong-Yi
論文名稱: 雙三爪攪拌混合器之對流混合特性分析
Analysis of Convective Mixing Characteristics in the Twin-impellers Stirred Tank
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 66
中文關鍵詞: 晶格波茲曼法攪拌葉片位置混合濃度
外文關鍵詞: Lattice Boltzmann method, Stirred tank, Different placements of impellers, Concentration
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以晶格波茲曼法探討一開放圓型攪拌混合器於流體的濃度混合效率問題,入口角固定45度下,藉由兩個攪拌棒於濃度一階差分為零的攪拌槽內運轉之流場與濃度場,討論不同的葉片擺放位置在等角速度轉動和區間擺動下改變攪拌速度及振幅角度對混合效率的影響 。基於不可壓縮流之假設,本文以適當的設定轉速來確保流場的適用性。結果顯示同雷諾數下,葉片水平和垂直擺放之振幅分別大於 和 時,比等角速度轉動之混合效益還高,但是當擺動振幅趨近 時,因為攪拌棒擺動幅度過大,造成上下壁面未混合均勻的流體被推擠流出,故混合效率反而下降。上入口和出口斜置擺放葉片的攪拌槽則是以等角速度轉動即可得良好的混合效率。

    This dissertation is to investigate the various scale of mixing efficiency, which are influenced by different placing impellers with oscillating and rotation. Using Lattice Boltzmann method to analyze the flow field and concentration field of stirred tank within the moving impellers. There are three types of position of the two impellers, one is horizontal, the second one is vertical, and the third is putting each impeller on upper entrance and exit tube.
    The result reveals that the oscillating motion could lead to a better mixing performance. Besides, under the same constant angular velocity the position of the impellers which located at upper entrance and exit is the best.

    摘要i Extended Abstractii 誌謝xiii 目錄xiv 圖目錄xvii 表目錄xix 符號表xx 第一章 緒論1 1.1 研究背景與動機1 1.2 晶格波茲曼法簡介1 1.3 晶格波茲曼法文獻回顧3 1.4 本文架構5 第二章 晶格波茲曼法理論與基本模型7 2.1 晶格波茲曼法理論7 2.2 晶格波茲曼法D2Q9模型與巨觀方程式9 2.3 邊界格點判別法12 2.4 濃度方程式13 第三章 邊界處理方法與程式驗證19 3.1 晶格波茲曼方法的邊界處理方法19 3.1.1 反彈邊界19 3.1.2 速度及壓力邊界20 3.1.3 曲面邊界21 3.1.4 移動邊界23 3.1.5 濃度場反彈邊界24 3.2 程式驗證24 3.2.1 程式流程24 3.2.2 文獻驗證25 第四章 數值模擬之結果與討論30 4.1 幾何模型與邊界條件30 4.2 攪拌棒葉片運動方式之定義33 4.3 相同雷諾數下的不同葉片位置配置之混合效率討論34 4.4 不同雷諾數下等角速度轉動之流場與混合效益分析36 4.5 不同振幅對區間擺動於流場與混合效益之影響37 第5章 結論與未來展望52 5.1 結論52 5.2 未來展望53 參考文獻54 附錄A 平衡態分布函數使用擬設法之推導57

    An, S. J., Kim, Y. D., Heu, S., and Maeng, J. S. (2006). Numerical study of the mixing characteristics for rotating and oscillating stirrers in a microchannel. Journal of the Korean Physical Society, 49(2), 651-659.
    An, S. J., Kim, Y. D., and Maeng, J. S. (2006). A Study on Mixing Enhancement by Rotating and Oscillating Stirrers in the Micro Channel. Transactions of the Korean Society of Mechanical Engineers B, 30(5), 430-437.
    Bhatnagar, P. L., Gross, E. P., and Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical review, 94(3), 511.
    Bouzidi, M. h., Firdaouss, M., and Lallemand, P. (2001). Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of Fluids, 13(11), 3452-3459.
    Chen, Q., Ren, J., and Guo, Z. (2008). Field synergy analysis and optimization of decontamination ventilation designs. International Journal of Heat and Mass Transfer, 51(3), 873-881.
    Chang, S. C., Chen, C. L., and Cheng, S. C. (2015). Analysis of convective heat transfer improved impeller stirred tanks by the lattice Boltzmann method. International Journal of Heat and Mass Transfer, 87, 568-575.
    Chang, S.-C., Hsu, Y.-S., and Chen, C.-L. (2011). Lattice Boltzmann simulation of fluid flows with fractal geometry: An unknown-index algorithm. J. Chin. Soc. Mech. Eng, 32(6), 523-531.
    Chang S-C, (2016). Lectures for the Lattice Boltzmann Method, Department of Mechanical Engineering, NCKU, Taiwan.
    Chen, S., Martinez, D., and Mei, R. (1996). On boundary conditions in lattice Boltzmann methods. Physics of Fluids, 8(9), 2527-2536.
    Chen, C. L., Chang, S. C., and Chen, C. Y. (2017). Lattice Boltzmann simulation of convective heat transfer of non-Newtonian fluids in impeller stirred tank. Applied Mathematical Modelling, 46, 519-535.
    Higuera, F., and Jimenez, J. (1989). Boltzmann approach to lattice gas simulations. EPL (Europhysics Letters), 9(7), 663.
    Higuera, F., Succi, S., and Benzi, R. (1989). Lattice gas dynamics with enhanced collisions. EPL (Europhysics Letters), 9(4), 345.
    Inamuro, T., Yoshino, M., and Ogino, F. (1995). A non‐slip boundary condition for lattice Boltzmann simulations. Physics of Fluids, 7(12), 2928-2930.
    Kang, J., Li, Z., and Suh, Y. K. (2006). Lattice-Boltzmann Simulation of Microchannel Flow and Mixing Under the Effect of Zeta-Potential Modulation in Time. 대한기계학회 춘추학술대회, 759-764.
    Kim, Y.-D., An, S.-J., and Maeng, J.-S. (2007). Numerical analysis of the fluid mixing behaviors in a microchannel with a circular cylinder and an oscillating stirrer. Journal of the Korean Physical Society, 50(2), 505-513.
    Lallemand, P., and Luo, L.-S. (2003). Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions. Physical review E, 68(3), 036706.
    McNamara, G. R., and Zanetti, G. (1988). Use of the Boltzmann equation to simulate lattice-gas automata. Physical review letters, 61(20), 2332.
    Noble, D. R., Georgiadis, J. G., and Buckius, R. O. (1995). Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows. Journal of Statistical Physics, 81(1), 17-33.
    Qian, Y., d'Humières, D., and Lallemand, P. (1992). Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters), 17(6), 479.
    Shan, X. (1997). Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method. Physical review E, 55(3), 2780.
    Shih, T. H., and Liu, N. S. (2009). Numerical Study of Outlet Boundary Conditions for Unsteady Turbulent Internal Flows Using the NCC. In 20th AIAA Computational Fluid Dynamics Conference (p. 3701).
    Shih, Y. C., Khodadadi, J. M., Weng, K. H., and Ahmed, A. (2009). Periodic fluid flow and heat transfer in a square cavity due to an insulated or isothermal rotating cylinder. Journal of Heat Transfer, 131(11), 111701.
    Ziegler, D. P. (1993). Boundary conditions for lattice Boltzmann simulations. Journal of Statistical Physics, 71(5), 1171-1177.
    Zou, Q., and He, X. (1997). On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 9(6), 1591-1598.
    何雅玲,王勇,李慶. 格子 Boltzmann 方法的理论及应用: 科学出版社, 2009.
    郭照立,鄭楚光. 格子 Boltzmann 方法的原理及应用: 科学出版社, 2009.
    卓慶章.微流體混合器之研究:國立成功大學, 2009

    下載圖示 校內:2019-08-31公開
    校外:2019-08-31公開
    QR CODE