簡易檢索 / 詳目顯示

研究生: 呂穎智
Lu, Ying-Zhi
論文名稱: 電漿熔射氟基磷灰石鍍層披覆於鈦合金基材之研究
The characteristics of plasma-sprayed Fluorapatite coatings on titanium alloy
指導教授: 李澤民
Lee, Tzer-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 氟基磷灰石氫氧基磷灰石電漿熔射
外文關鍵詞: plasma spray, Hydroxyapatite, Fluorapatite
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有生物活性的陶瓷,特別是鈣磷化合物,常使用於金屬植入材料表面的塗佈層。由於他們具有生物活性的特徵,生物活性陶瓷能修復、固定,並加強宿主的骨頭與植入物之間的鍵結。氫氧基磷灰石(HA)與氟基磷灰石(FA)被廣泛地使用於牙科與外科。氫氧基磷灰石是一種類似人體硬組織中的無機成分,並且擁有促進骨頭生成與成長的能力,但是HA容易在人體中溶解。此外,根據先前的研究結果顯示氟基磷灰石是一種生物可相容性的材料,並且擁有較佳的穩定性形成功能較佳的骨頭。這個研究的目的在於了解氟基磷灰石藉由電漿熔射法在不同參數時其披覆層之物理、化學及生物性質,並且以氫氧基磷灰石作為對照。這些樣品的特性以電子顯微鏡(SEM)、X光繞射儀(XRD)以及傅立葉紅外線光譜(FT-IR)、氟離子選擇電極(F Ion Selective Electrode)以及熱差分析儀(DTA)分析之。為了瞭解樣品在人體之中的行為,樣品會被浸泡在37℃的模擬人體體液,浸泡的樣品將以SEM、XRD作評估。在生物性質方面以細胞培養作為生物相容性之依據。研究結果顯示:HA及FA(披覆試片)皆有相同的相組成。增加工作電流及氫氣流量可提升塗層的厚度與粗糙程度,但結晶程度會隨著工作電流及氫氣流量增加而減少。

    Bioceramics, especially in calcium phosphate, have been used as a surface-coating material on metallic implants. Due to their bioactive characteristics, bioceramics enable rapid fixation and stronger bonding between the host bone and the implant. Hydroxyapatite (HA) and Fluorapatite (FA) have been widely used in dentistry and orthopedics. HA is similar to inorganic component in human hard tissue. It has the innate ability to promote bone formation and growth, However HA easily dissolve in human body. On the other way, the pervious studies indicated that FA is a biocompatible material, and it is more stable than HA and ensures the functionally strong bone formation. The aim of this study is to evaluate the characteristics of FA coating using plasma spray in different parameters. By comparing with HA, the FA coatings were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), F Ion Selective Electrode and Differential Thermal Analyzer (DTA). To study the behaviors of the samples in human body, the specimens would be soaked in simulated body fluid (SBF) at 37℃. Then the soaked specimens were measured by SEM and XRD. In the assay of cellular biocompatibility, human osteosarcoma cells were cultured on those specimens and the cell morphology were evaluated. Moreover, both of HA and FA (coatings) had the same phase composition. To increase the current and the hydrogen flows may enhance the thickness and roughness of the HA & FA coatings, but decrease their crystallization.

    中文摘要……………………………………………………………………………i ABSTRACT ………………………………………………………………………ii 誌謝………………………………………………………………………………iii 目錄………………………………………………………………………………iv 表目錄……………………………………………………………………………vi 圖目錄……………………………………………………………………………vii 符號………………………………………………………………………………ix 第一章 緒論………………………………………………………………………1 1-1 前言………………………………………………………………………1 1-2 生醫材料…………………………………………………………………1 1-3 生醫材料的分類…………………………………………………………2 1-4 生醫材料的應用…………………………………………………………4 1-5 骨科生醫材料……………………………………………………………4 第二章 文獻回顧與研究目的……………………………………………………6 2-1 磷灰石之基本性質………………………………………………………6 2-1-1 磷酸鈣陶瓷在室溫下水溶液中的穩定性………………………8 2-1-2 氫氧基磷灰石的高溫相穩定性…………………………………8 2-1-3 磷灰石的合成……………………………………………………9 2-2 氟基磷灰石……………………………………………………………10 2-3 鈦金屬及其生醫應用上的優勢………………………………………10 2-4 電漿熔射………………………………………………………………12 2-5 研究目的………………………………………………………………14 第三章 實驗內容與方法………………………………………………………16 3-1第一部分實驗:粉末製備與性質………………………………………16 3-1-1 粉末製備………………………………………………………16 3-1-2 粉末的鑑定……………………………………………………17 3-2 第二部份實驗:塗層之基本性質………………………………………18 3-2-1 分析儀器………………………………………………………18 3-3 第三部份實驗:塗層浸泡之物理化學性質……………………………20 3-4 第四部份實驗:塗層之生物性質實驗…………………………………20 3-4-1 細胞固定………………………………………………………21 3-5 塗層試片製備…………………………………………………………21 第四章 結果與討論……………………………………………………………22 4-1粉末形態觀察……………………………………………………………22 4-2粉末的熱性質……………………………………………………………22 4-3 FA粉末氟離子的定量…………………………………………………22 4-4 Carry gas的影響…………………………………………………………23 4-5 HA與FA的噴塗試片表面觀察…………………………………………24 4-6 HA與FA的噴塗試片橫截面觀察………………………………………24 4-7 粉末XRD繞射分析……………………………………………………24 4-8 披覆物XRD繞射分析…………………………………………………25 4-9 披覆物結晶程度分析…………………………………………………25 4-10 披覆物之FTIR分析…………………………………………………26 4-11 披覆試片之粗糙程度分析……………………………………………26 4-12 浸泡實驗之相與元素組成……………………………………………26 4-13 細胞固定結果…………………………………………………………27 第五章 結論……………………………………………………………………28 參考文獻…………………………………………………………………………29

    1. K. Soballe. Hydroxtapatite ceramic coating for bone implant fixation. ACTA Orthopaed. Scandinm Supplem. 64:1-58. 1993

    2. J. J Callaghan. Current concerts review: The clinical results and basic science of total hip arthroplasty with porous-coated prostheses. J. Bone Joint Surg. 75A:299-310. 1993

    3. L. L Hence, E. C. Ethridge. Biomaterials-An Interfacil Approach. Academic Press, INC.18-21. 1982

    4. R. H. Doremus. Review Bioceramics. J. Mater. Sci. 27: 285-297. 1992

    5. G. Heimke. The Aspects and Methods of Fixation of Bone Replacement. Materials & Joint Replacement. 1-26. 1990

    6. M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay, R. H. Doremus. Hydroxyapatite synthesis and Characterization in Dense Polycrystalline Form. J. of Mater. Sci. 11: 2027-2053. 1976

    7. M. Yoshinari, Y. Ohtsuka, T. Derand. Thin Hydroxyapatite Coating Produced by the Ion Beam Dynamic Mixing Method. Biomaterials. 15: 529-535. 1994

    8. J. Breme, Y. Zhou, L. Groh. Development of a Titanium Alloy Suitable for an Optimized Coating with Hydroxyapatite. Biomaterials. 16: 239-244. 1995

    9. B. C. Wang, E. Chang, C. Y. Yang, D. Tu, C. H. Tsai. Characteristics and Osteoconductivity of Three Different Plasma-sprayed Hydroxyapatite Coatings. Surface and Coating Technology. 58: 107-117. 1993

    10. H. Monma. Electrolytic Deposition of Calcium Phosphates on Substrate. J. of Mater. Sci. 29: 949-953. 1994

    11. J. W. Frame, R. M. Browen, C. L. Brady. Hydroxyapatite as a bone Substitute in the jaws. Biomaterials. 2: 19-22. 1981

    12. 韓宗立. 生醫用氫氧基磷灰石之研究. 國立成功大學礦冶及材料科學研究所碩士論文. 1986

    13. Huaxia JI, P. M. Marquis. Sintering Behavior of Hydroxyapatite with 20wt% Al2O3. J. of Material Science. 25: 1941-1945. 1990

    14. M. H. Hon, F. H. Lin. A study of the Sintering of β-TCP Biomaterials. in ceramics in Applications. 43-45. 1987

    15. H. Newesely, J. F. Osborn. Structure and Texture implications of Calcium Phosphates in Ceramics in Ceramics. Mechanical Properties of Biomaterials. 457. 1980

    16. J. C. Trombe, G. Montel. Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice—I On the existence of calcium and strontium oxyapatites. Journal of Inorganic and Nuclear Chemistry. 40: 15-21. 1978

    17. P. V. Riboud. Phase Diaagrams for Ceramists Volume V. The American Ceramic Society Inc. 321-322. 1983

    18. M. J. Filiaggi, R. M. Pilliar, N. A. Coombs. Post-plasma-spraying heat treatment on the HA coating/Ti6Al4V implant system. J.B.M.R. 27: 191-198. 1993

    19. A. L. Boskey, A. S. Posner. Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite: a pH-dependent, solution-mediated, solid-solid conversion. J. Phys. Chem. 7: 2313-2317. 1973

    20. M. Lee. Advances in Biomaterials. 1982

    21. F. C. M. Driessens. Formation and stability of calcium phosphates in relation to the phase composition of the mineral in calcified tissue. in Bioceramic of Calcium Phosphate. 1-32. 1983

    22. P. Adam, A. Nebelung, and M. Vogt. Verhalten von mit Tricalciumphosphat beschichteten Titanimplantaten bei der Behandlung mit Wasser von 80 ℃ (Behavior of titanium implants coated with tricalcium phosphate during treatment with water at 80 ℃). Sprechsaal. 121: 941-944. 1988

    23. H. Newesely. High temperature behavior of hydroxy- and fluorapatite. J. Oral Rehab. 4: 97. 1997

    24. A. S. Posner, A. Perloff, A. D. Diorio. Refinement of hydroxyapatite structure. Acta. Cryst. 11: 308-306. 1958

    25. G. Smith. Phase Diagrams for Ceramists. American Ceramic Society. 5: 321-322. 1983

    26. G. Smith. Phase Diagrams for Ceramists. American Ceramic Society 106. 1979

    27. M. Yoshimura, H. Suda. Hydrothermal Processing of Hydroxyapatite: Part, Present and Future. in Hydroxyapatite and Related Materials. 45-72. 1994

    28. F. C. M. Driessens. Formation and stability of calcium phosphates in relation to the phase composition of the mineral in calcified tissue. in Bioceramic of Calcium Phosphate. 1-32. 1983

    29. D. Shi (Ed.). Biomaterials and Tissue Engineering. Springer 5-8. 2004

    30. M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay, R. H. Doremus. Hydroxyapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11: 2027-2035. 1976

    31. T. Kijima, M. Tsutsumi. Preparation and thermal properties of dense poly-crystalline oxyhydroxyapatite. J. Am. Ceram. Soc. 62: 455-460. 1979

    32. G. de With, H. J. A. Vandijk, N. Hattu, K. Prijs. Preparation, microstructure and mechanical properties of dense polycrystalline hydroxyapatite. J. Mater. Sci. 16: 1592-1598. 1981

    33. GUNNAR RöLLA, WILLIAM H. BOWEN. Surface adsorption of fluoride and ionic exchange reactions on hydroxyapatite. Acta Odontol. Scand. 36: 219-224. 1978

    34. J. Clarkson, K. Hardwick, D. Barnes. International Collaborative Research on Fluoride. J. Dent.Res. 79: 893-904. 2000

    35. H.R. Rawls, B.F. Zimmerman. Fluoride-Exchanging Resins for Caries for Caries Protection. Caries Res 17: 32-43. 1983

    36. John J. Clarkson, acinta McLoughlin. Role of fluoride in oral health promotion. International Dental Journal. 50: 119-128. 2000

    37. 黃瑞祥, 許澤勳. 氫氧基磷灰石離子交換後的機械性質與其粉末製備. 工程科技與中西醫應用研討會. E.1.1. 2002

    38. D. Dowson. Bio-tribology of natural and replacement synovial joints. in Biomechanics of Diarthrodial Joints. 305-345. 1992

    39. J. B. Park, and J. D. Bronzino. Biomaterials: Principles and Applications. CRC Press. 5-8. 2000

    40. H. Baker, L. H. Bennett, J. L. Murray, T. B. Massalski. Binary Alloy Phase Diagrams. American Society for Metals. 1: 175. 1986

    41. M. Long, H. J. Rack. Review: Titanium alloys in total joint replacement-a materials science perspective. Biomaterials. 19: 1621-1639. 1998

    42. P. M. Pilliar, H. U. Cameron, A. G. Binnington, J. A. Szivek. Bone ingrowth and stress shielding with a porous surface coated fracture fixation plate. J. Biomed. Mater. Res. 13: 799-810. 1979

    43. S. D. Cook, K. A. Thomas, J. F. Kay, M. Jarcho. Mechanics and histology of hydroxylapatite coated implant surfaces. Clin. Orthop. 232: 225-244 1988

    44. F. N. Longo, J.M. Houben. Second National Conference on Thermal spray. American Welding Society Inc. 1. 1984
    45. J. H. Clare, et al. Metal Handbook. American Society for Metals. 361. 1982

    46. F. N. Longo, J.M. Houben. Thermal Spraying Pratice, Theory and Application. American Welding Society Inc. 1. 1984

    47. H. S. Ingham, A.Mecto Pshepard. Flame Spray Handbook. 3:17. 1965

    48. Kinnari A. Bhadang, Karlis A. Gross. Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials. 25: 4935-4945. 2004

    49. E. J. Lee, S. H. Lee, H. W. Kim, Y. M. Kong, H. E. Kim. Fluoridated apatite coatings on titanium obtained by electron-beam deposition. Biomaterials. 26: 3843-3851. 2005

    50. 何孟亭. 電漿熔射瓷粉/氫氧基磷灰石塗層特性及電子顯微分析研究. 國立成功大學材料科學及工程研究所碩士論文. 2000

    51. 楊崇煒. 水熱法與高溫後處理對電漿熔射氫氧基磷灰石塗層微觀組織及結合強度之效應. 國立成功大學材料科學及工程研究所博士論文. 2006

    52. R. G. Geesink, K. d. Groot and BAP Klein. Bonding of bone to apatite-coated implants. J. Bone Joint Sorg. 70B: 17. 1988

    53. M. Okazaki, H. Tohda, T. Yanagisawa, M. Taira, J. Takahashi. Heterogeneous fluoridated apatites synthesized with a three-step fluoride supply system. Biomaterials. 19: 919-923. 1998

    54. S. Koutsopoulos. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J Biomed Mater Res. 62:600-612. 2002

    無法下載圖示 校內:2106-08-31公開
    校外:2106-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE