| 研究生: |
李芃葶 Li, Peng-Ting |
|---|---|
| 論文名稱: |
使用陰性-陽性離子型界面活性劑系統合成各種新奇形態中孔洞氧化矽 Synthesis of Mesoporous Silicas in Various Novel Morphologies Using Cationic-Anionic Binary Surfactant Mixtures |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 界面活性劑 、中孔洞氧化矽 、生物成礦 |
| 外文關鍵詞: | Surfactant, Mesoporous silica, Biomineralization |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自然界中有許多複雜的生物結構皆是藉由高度結合的有機物與無機物複合而成,如生物體中的骨骼、牙齒以及海洋中的矽藻、貝類等。有機-無機複合材料,是經由分子自組裝過程形成。分子自組裝的行為普遍存在於生物系統中,是各種複雜生物結構形成的基礎。本研究將此生物成礦之觀念應用於合成奈米結構氧化矽材料,期盼能合成出與自然界矽藻相似的型態構造。
本研究所選用的有機模板為界面活性劑,無機物來源有四乙氧基矽烷(TEOS)或矽酸鈉sodium silicate, S.S.)溶液。由界面活性劑化學知,陽性-陰性離子型界面活性劑所組成的系統,可形成各種微胞結構和介尺度液晶相,適合作為合成中孔洞氧化矽的多樣性模板。此論文中採用的陽離子型界面活性劑為C16TAB,而選用的陰離子型界面活性劑為stearic acid或是SDS(sodium dodecyl sulfate),藉由調整兩成份間的比例,形成的陽-陰離子型界面活性劑混合系統,在不同溫度、水量、pH值條件下,結合無機物(TEOS或S.S.),製備出各種不同型態及結構的中孔洞氧化矽材料。
本實驗主要分成兩個部分:一、以C16TAB陽離子型界面活性劑與stearic acid(硬脂酸,S.A.)製備紅血球狀中孔洞氧化矽;二、以C16TAB陽離子型界面活性劑與SDS製備纖維狀中孔洞氧化矽,此陽-陰離子型界面活性劑之混合系統不同莫耳比例下,分別可得空心纖維狀中孔洞氧化矽以及螺旋狀纖維中孔洞氧化矽。為探討各種實驗便因對氧化矽型態的影響,本實驗將針對陽-陰界面活性劑比例、反應pH值、反應溫度、無機物濃度等不同變因逐一討論,找出最佳合成條件,並整合其結果以推測合成機制。
本實驗合成方法簡易,實驗再現性高,在適當反應條件下混合各成份,即可合成出結構完整、粒徑均勻、分散性佳的中孔洞氧化矽材料,對於自然界生物成礦的形成機制與理論,希望予以相當的參考價值。
Molecular self-assembly behavior generally existing in the living systems is the basis of complex biological structures. In this thesis, we mimic the biomineralization to fabricate mesoporous silica materials in various morphologies and mesostructures. Based on surfactant chemistry, it is known that there are many mesophases and morphologies existing in the mixture of cation-anionic surfactant (i.e. catanionic surfactant). Therefore, the catanionic surfactant in different cationic/anionic surfactant ratios can be used as a versatile template to synthesize the mesoporous silica with spectacular morphologies. Actually, the morphology of the resulted mesoporous silica is dependent on the synthetic conditions (such as temperature, molar ratio(R) of the anion/cation surfactant, silica source and water content). As the R value is set to be around 0.4, red cell-like mesoporous silica was synthesized at pH5.5 and 40℃. Interestingly, after hydrothermal treatment, the center part gets hollow, and the donut-shape mesoporous silica was formed instead.
Similarly, as the R value decreased to be 0.2, dendrimer-like mesoporous silica spheres formed at pH8.0 and 40℃. Due to the alkaline reaction condition, it is suitable for preaparing nano-metal/mesoporous silica materials for advanced applications. To fabricate mesoporous silica helical fibers, the optimal R value is around 0.15 under a reaction condition at pH of 1.5 and 55℃. After hydrothermal treatment, the mesoporous silica helical hollow fibers were produced. Furthermore, a homogeneous mixture of the mesoporous silica helical fibers and liquid crystal can be used to assemble a smart window.
1. M. B, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D.Stucky, D. E. Morse, Nature 1996, 381, 56.
2. Nils Kroger, Nicole Poulsen , Annu. Rev. Genet. 2008. 42,83.
3. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
4. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
5. H. Heuer, D. J. Fink, V. J. Laraia, J. L. Arias, P. D. Calvert, K. Kendall, G. L. Messing, J. Blackesll, P. C. Rieke, D. H. Thompson, A. P. Wheeler, A. Veis, A. I. Caplplan, Science, 1992, 255, 1098.
6. Sayari , Chem. Mater., 1996, 8, 1840.
7. R. Neumann, A. M. Khenkin, Chem. Commun., 1996, 23, 2643.
8. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63
9. M. Hartmann, A. Popll , L. Kenvan, J. Phys. Chem., 1996,100, 9906.
10. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
11. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
12. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
13. C.-G. Wu, T. Bein, Chem. Mater., 1994, 266, 1109.
14. Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
15. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, D. Zhao, Angew. Chem., 2003, 115 , 3254.
16. A. Vinu, V. Murugesan, M. Hartmann, Chem. Mater. 2003, 15, 1385.
17. H. P. Lin, C. Y Tang and C. Y. Lin, J. Chin. Chem. Soc., 2002, 49, 981.
18. V. Alfredsson and M. W. Anderson, Chem. Mater., 1996, 8, 1141.
19. H. P. Lin and C. Y. Mou, Acc. Chem. Rev., 2002, 35, 927.
20. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U Kwon, O. Terasaki, S.–E. Park and G. D. Stucky, J. Phys. Chem. B., 2002, 106, 2552.
21. A. Bhaumik and S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691.
22. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao, Angew. Chem. Int. Ed., 2001, 7, 1258.
23. A. Walcarius, M. Etienne, B. Lebeau, Chem. Mater. 2003, 15, 2161.
24. T. Yokoi, H. Yoshitake, T. Tatsumi, J. Mater. Chem. 2004, 14 , 951.
25. J. M. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature, 2000, 48, 289.
26. E. B. Erlein, Angew. Chem. Int. Ed. 2003, 42, 614.
27. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. Xu, Angew. Chem. Int. Ed. 2003, 42, 413.
28. S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392.
29. N. Kröger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129.
30. E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed. 2002, 41, 1543
31. T. F. Todros, Surfactants, Academic Press : London, 1984.
32. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
33. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264.
34. S. Consola, M. Blanzat, E. Perez, J-C. Garrigues, P. Bordat, I. R. Lattes, Chem. Eur. J. 2007, 13, 3039
35. E. W. Kaler, A. K. Murthy, B.E. Rodriguez, J. A. N. Zasadzinski, Science, 1989, 245, 1371.
36. L. L. Brasher, K. L. Herrington, E. W. Kaler, Langmuir, 1995, 11, 4267.
37. M. T. Yatcilla, K. L. Herrington, L. L. Brasher, E. W. Kaler, S. Chiruvolu, J. A. Zasadzinski, J. Phys. Chem. 1996, 100 , 5874.
38. K. Tsuchiya, H. Nakanishi, H. Sakai, M. Abe, Langmuir, 2004, 20, 2117.
39. C. Letizia, P. Andreozzi, A. Scipioni, C. La Mesa, A. Bonincontro, and E. Spigone, J. Phys. Chem. B, 2007, 111, 898
40. R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc., 1950, 72, 5705
41. C. Okkerse, B. G. Linsen, Physical Chem. Aspects of Adsorbents and Catalysis, Academic, New York, 1970
42. 廖文家,“壓克力/二氧化矽混成材料的製備與性質研究”,中原大學化學研究所,2005
43. 鄭舜宇,“以溶膠-凝膠法合成高分子基氧化矽複合材料之研究”,中山大學材料科學研究所,2001
44. 陳俊光,“以溶凝膠法合成PMMA/氧化矽複合材料的光譜、熱性質、與型態分析”,中原大學化學系研究所,2003
45. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
46. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 273,548.
47. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
48. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids, 1985, 70, 301.
49. K. Yamashita, H. Owada, H. Nakagawa, T. Umegaki and T. Kanazawa, J Am Ceram Soc, 1986, 69, 590-594.
50. 劉冠岑,” 使用陰-陽離子混合界面活性劑合成各種形態之中孔洞氧化矽、磷酸鈣、磷酸鈣/二氧化矽複合材料” 國立成功大學化學研究所碩士論文,2011.
51. 蔡依樺,” 利用陽性-陰性離子型界面活性劑系統合成螺旋狀中孔洞氧化矽材料” 國立成功大學化學研究所碩士論文,2008.
52. 張桂敏,” 利用陽性-陰性離子型界面活性劑系統合成各種新奇型態中孔洞氧化矽” 國立成功大學化學系碩士班論文,2007.
53. 古盈敏,” 利用陽性-陰性離子型界面活性劑系統合成囊泡狀及同心球狀中孔洞氧化矽材料” 國立成功大學化學研究所碩士論文,2008.