簡易檢索 / 詳目顯示

研究生: 鄭亦倫
Cheng, I-Lun
論文名稱: 最佳化之p型氧化鎳電洞傳輸層用於高亮度甲基氨基溴化鉛鈣鈦礦發光二極體
Bright light-emitting diodes based on MAPbBr3 perovskite with optimized p-NiOx hole transporting layer
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 85
中文關鍵詞: 鈣鈦礦發光二極體氧化鎳半導體元件
外文關鍵詞: Perovskite, Nickel oxide, Light emitting diodes, Semiconduction
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於使用有機混無機結晶材料之鈣鈦礦,混合鹵素”溴”,形成鹵化物溶液塗佈在基板上作為發光層,而在電洞傳輸層選擇以濺鍍與調配溶液兩種方法製備p-NiOx,而調配NiOx在溶解狀態下以不同溫度(Room temperature,100。C, 150。C) 加熱,形成良好的NiOx溶液,再利用熱退火處理,以提高電洞濃度作為有機混無機之鈣鈦礦發光二極體之電洞傳輸層,而NiOx作為電極中間層對於空穴的傳輸具有合適的能級,並且能阻止鈣鈦礦層中的電子傳遞到達電極,從而增加發射層中復合的概率。為了更了解氧化鎳薄膜(一)表面粗糙度(二)霍爾量測電洞濃度的變化(三)鎳缺陷含量,將會在此篇中進行探討。其中,調配溶液的氧化鎳在退火後電洞濃度在 5.33×1017 cm-3,而在調配氧化鎳溶液時以150。C加熱溶解在經過退火後氧化鎳濃度更加升高至1.52×1019 cm-3.這歸因於氧化鎳(111)之晶向更強,也就是非化學劑量組成增加,且部分二價鎳離子轉換成三價,所以鎳空缺增加造成電洞濃度提升. 而最佳化之p型氧化鎳電洞傳輸層用於高亮度甲基氨基溴化鉛鈣鈦礦發光二極體時,擁有最低導通電壓2V,且亮度高達116,295 cd/m2 而電流效率也達到5.7cd/A.

    The purpose of this study is mixing the bromine with an organic / inorganic crystalline perovskite material to form a halide solution on a substrate as a light-emitting layer. The p-NiOx is the hole transporting layer in perovskite which is prepared by two methods sputtering and deployment. And the NiOx solution is prepared by heating process at different temperatures (Room temperature, 100°C, 150°C). Thermal treatment is used to improve the hole concentration for the NiOx solution. The NiOx electrode interlayer exhibits a suitable energy level for the transport of holes, and also blocks the transport of the electrons in perovskite layer from reaching the electrodes to increase the probabilities of the recombination in the emissive layer. To further understand the mechanism of p-type nickel oxide thin film, this work discusses a lot of characteristic including roughness, hole concentration and nickel vacancies. In particular, the NiOx has the hole concentration of 5.33x1012 cm3 by solution-processed and annealing. After thermal-treated solution and annealing, the hole concentration gets to 1.52×1019 cm-3. This increase resulted from the orientation of NiOx (111) stronger and the Ni+2 ions became Ni+3 ions. Thus, the nickel vacancies get more than before. The bright light-emitting diodes based on MAPbBr3 perovskite with optimized p-NiOx hole transporting layer has turn-on voltage at 2 V. After heating at 150°C, the device has maximum luminance at 116,295 cd/m2 while biased at 7.9 V and the current efficiency at 5.7 cd/A.

    Contents 摘要 I Abstract II 致謝 IV Contents VI Figure Captions VIII Table Captions X Chapter 1 Introduction 1 1.1 The Perovskite discover 1 1.2 The Perovskite crystal structure 2 1.3 The perovskite light color and wavelength 3 1.4 Motivation 4 5 Reference 15 Chapter 2 Material introduction 18 2.1 Hole transporting layer 18 2.1.1 PEDOT:PSS 18 2.1.2 Poly-TPD 19 2.1.3 p-type Nickel Oxide 19 2.2 Electron transporting layer 20 2.3 Methylammonium Lead X3 (X = Iodide, Chlorine, Bromine) 21 2.3.1 Methylammonium Lead Bromine 21 2.3.2 CH3NH3Br and PbBr3 chemical synthesis method 21 2.3.3 CH3NH3PbBr3 growth method 22 Reference 30 Chapter 3 Deployment of Perovskite Light Emitting Diodes 31 3.1 Experiment Process 31 3.2 Result and discussion 32 Reference 53 Chapter 4 Optimization of Hole Transport Layer 54 4.1 P-type Nickel Oxide by Solution-processed and Sputtering 54 4.2 P-type Nickel oxide by sputtering 54 4.3 P-type Nickel oxide by Solution-process 56 4.3.1 P-type Nickel oxide by Thermal-treated Solution 57 4.3.2 Hall concentration of solution-processed p-NiOx on Glass 58 4.3.3 Root Mean Square of solution-processed p-NiOx on ITO/Glass 58 4.3.4 XPS of solution-processed p-NiOx on ITO/Glass 59 4.3.5 Photoluminescence spectra of solution-processed p-NiOx on ITO/Glass 59 Reference 80 Chapter 5 Conclusions and Future work 81 5.1 Conclusions 81 5.2 Future work 82 Reference 85

    Chapter 1
    [1]J. P. C. Baena, L. Steier, W. “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency” Energy Environ. Sci , pp. 1989-1997, 2016.
    [2]Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, “Bright light-emitting diodes based on organometal halide perovskite" Nat. Nanotechnol, vol. 9, pp. 687-692, 2014.
    [3]M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, “Tuning of perovskite solar cell performance via low-temperature brookite scaffolds surface modifications” APL Mater, vol. 5, 2017.
    [4]R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, “High-Gain and Low-Driving-Voltage Photodetectors Based on Organolead Triiodide Perovskites” Adv. Mater, vol. 27, pp. 1912-1918, 2015.
    [5]N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells” Nature, vol. 517, pp. 476-517, 2015.
    [6]M. Green, A. Ho-Baillie, H. J. Snaith, “The emergence of perovskite solar cells” Nat. Photonics, vol. 8, pp. 506-514. 2014.
    [7]M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, N. Mathews, “Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation” Adv. Mater, vol. 26, pp. 7122–7127, 2014.
    [8]B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, C. Boschloo, E. M. J. Johansson, “Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application” Adv. Mater, vol. 18, pp. 6806-6813, 2015.
    [9]M. F. Ayguler, M. D. Weber, B. M. D. Puscher, D. D. Medina, P. Docampo, R. D. Costa, “Light-Emitting Electrochemical Cells Based on Hybrid Lead Halide Perovskite Nanoparticles” J. Phys. Chem, vol. 119, pp. 12047−12054, 2015.
    [10]W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange” Science, vol. 348, pp. 1234-1237, 2015.
    [12]J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, “Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3 )” Adv. Mater, vol. 27, pp. 7162–7167, 2015.
    [13]N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, S. Mhaisalkar, “Inorganic Halide Perovskites for Efficient Light-Emitting Diodes” J. Phys. Chem. Lett, vol. 6, pp. 4360-4364, 2015.
    [14]Q. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, “Electro-optics of perovskite solar cells” Nat. Photonics, vol. 9, pp. 106-112, 2015.
    [15]S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber” Science, vol. 342, pp. 341-342, 2013.
    [16]N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin, J. Maier, M. Gratzel, “Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar- Light Harvesting” Angew. Chem, vol. 53, pp. 3151-3157, 2014.
    [17]J. Zhang, B. Xu, M. B. Johansson, M. Hadadian, J. P. C. Baena, P. Liu, Y. Hua, N. Vlachopoulos, E. M. J. Johansson, G. Boschloo, L. Sun, A. Hagfeldt, “Constructive Effects of Alkyl Chains: A Strategy to Design Simple and Non-Spiro Hole Transporting Materials for High-Efficiency Mixed-Ion Perovskite Solar Cells” Adv. Energy Mater, vol. 6, 2016.
    [18] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, “Bright light-emitting diodes based on organometal halide perovskite" Nat. Nanotechnol, vol. 9, pp. 687-692, 2014.
    [19]Tang CW, VanSlyke SA, Chen CH (1989) Electroluminescence of doped organic thin films. J Appl Phys 65(9):3610–3616.
    [20] A. Chihaya, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device.” J Appl Phys, vol. 90, pp. 5048–5051, 2001.
    [21]Y. L. Cheng, “Enhancing the efficiency of simplified red phosphorescent organic light emitting diodes by exciton harvesting.” Org Electron, vol. 13, pp. 925-931, 2012.
    [22]D. H. Kim, “Highly efficient red phosphorescent dopants in organic light-emitting devices.” Adv Mater, vol. 23, pp. 2721-2726, 2011.
    [23]M. A. Baldo, “Highly efficient phosphorescent emission from organic electroluminescent devices.” Nature, vol. 395, pp. 151154, 1998.
    [24]D. F. O’Brien, M. A. Baldo, “Improved energy transfer in electrophosphorescent devices.” Appl Phys Lett, vol. 74, pp. 442–444, 1999.
    [25]R. Meerheim, “Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices.” J Appl Phys , vol. 104, 2008.
    Chapter 2
    [1]]R. K. Gupta, K. Ghosh, P. K. Kahol, “Fabrication and characterization of NiO/ZnOp-n junctions by pulsed laser deposition,” Physica E, vol. 41, pp. 617–620, 2009.
    [2]J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, “Efficient Perovskite Quantum-Dot-Sensitized Solar Cell.” Nanoscale, vol. 3, pp. 4088-4093, 2011.
    [3]H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%.” Sci, vol. 2, 2012.
    [4]I. Chung, B. Lee, J. Q. He, R. P. H. Chang, M. G. anatzidis, ”All-Solid-State Dye-Sensitized Solar Cells with High Efficiency.” Nature, vol. 485, pp. 486-489, 2012.
    [5]M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites.” Science vol. 338, pp. 643-647, 2012
    Chapter 3
    [1] H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes.” SCIENCE, vol. 350, pp. 1222-1225, 2015.
    [2] J. C. Yu, D. W. Kim, D. B. Kim, E. D. Jung, J. H. Park, “Improving the Stability and Performance of Perovskite Light-Emitting Diodes by Thermal Annealing Treatment.” Adv. Mater, vol. 28, pp. 6906-6913, 2016.
    [3] https://goo.gl/q1RSqi
    [4] https://goo.gl/5pfYtw
    [5] https://goo.gl/4NxXCC
    [6] https://goo.gl/gBcVt8
    [7] https://goo.gl/d6nvYy
    Chapter 4
    [1] M. Guziewicz1, J. Grochowski, M. Borysiewicz , E. Kaminska, J. Z. Domagala, W.
    Rzodkiewicz , B. S. Witkowski, K. Golaszewska , R. Kruszka, M. Ekielski , A. Piotrowska“Electrical and optical properties of NiO films deposited by magnetron sputtering” Optica Applicata, Vol. 66, No. 2, 2011.
    [2] H. Sato, T. Minami, S. Takata, T. Yamada “Transparent conducting p-type NiO thin films prepared by magnetron sputtering” Thin Solid Films Vol. 236, Iss. 1–2, Pages 27-31, 15 Dec 1993.
    [3] S. Y. Park, H. R. Kim, Y. J. Kang, D. H. Kim, and J. W. Kang “Organic solar cells
    employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer” Solar Energy Materials and Solar Cells, Vol. 94, Iss. 12, Pages 2332–2336 Dec 2010.
    [4] H. L. Chen, Y. M. Lu, “Characterization of sputtered NiO thin films.” Surface & Coatings Technology, vol. 198, pp. 138-142, 2005.
    [5] H. Kumagai, M. Matsumoto, K. Toyoda, M. Obara, J. Mater. “Electrical and optical properties of Li-doped Ni–Si–O thin films.” (1996) 1081.
    [6] W.C. Yeh, M. Matsumura, Jpn. J. “Chemical Vapor Deposition of Nickel Oxide Films from Bis-π-Cyclopentadienyl-Nickel.” 36 (1997) 6884.
    [7] O. Kohmoto, H. Nakagawa, F. Ono, A. Chayahara, J. Magn. Magn.Mater. 226–230 (2001) 1627.
    [8] S. M. Meybodi, S. A. Hosseini, M. Rezaee, S. K. Sadrnezhaad, and D. Mohammadyani, “Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method” Ultr. Sono, vol. 19, pp. 841–845, Jul 2012.
    [9] W. L. Jang, Y. M. Lu, W. S. Hwang, T. Li Hsiung, and H. P. Wang “Point defects in
    sputtered NiO films” Appl. Phys. Lett , vol. 94, no. 6, pp. 062103, Mar 2009.
    [10] S. M. Meybodi, S. A. Hosseini, M. Rezaee, S. K. Sadrnezhaad, and D. Mohammadyani,“Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method” Ultr. Sono, vol. 19, pp. 841–845, Jul 2012.
    [11] W. L. Jang, Y. M. Lu, W. S. Hwang, T. Li Hsiung, and H. P. Wang “Point defects in sputtered NiO films” Appl. Phys. Lett , vol. 94, no. 6, pp. 062103, Mar 2009.
    Chapter 5
    [1] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, “Bright light-emitting diodes based on organometal halide perovskite" Nat. Nanotechnol, vol. 9, pp. 687-692, 2014.
    [2] L. Z. Robert, M. R. Chua, K. P. Musselman, G. Li, “Enhanced Performance in Fluorene-Free Organometal Halide Perovskite Light-Emitting Diodes using Tunable, Low Electron Affi nity Oxide Electron Injectors” Adv. Mater, vol. 27, pp. 1414-1419, 2015.
    [3] H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes.” SCIENCE, vol. 350, pp. 1222-1225, 2015.
    [4] J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, “Interfacial Control Toward Effi cient and Low-Voltage Perovskite Light-Emitting Diodes.” Adv. Mater, vol. 27, pp. 2311-2316, 2015.
    [5] J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala, T. W. Lee, “Effi cient Visible Quasi-2D Perovskite Light-Emitting Diodes.” Adv. Mater, vol. 28, pp. 7515–7520, 2016.
    [6] Y. K. Chih, J. C. Wang, R. T. Yang, C. C. Liu, Y. C. Chang,Y. S. Fu, T. F. Guo, “NiO x Electrode Interlayer and CH3NH2/CH3NH3PbBr3 Interface Treatment to Markedly Advance Hybrid Perovskite-Based Light-Emitting Diodes.” Adv. Mater, vol. 28, pp. 8687–8694, 2016.

    無法下載圖示 校內:2022-07-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE