| 研究生: |
蕭積輝 Hsiao, Chi-Hui |
|---|---|
| 論文名稱: |
硫醇化奈米銀線與奈米碳管製備可撓式拉伸彈性電極材料 Fabrication of Thiolation Silver Nanowires/Carbon Nanotubes for Stretchable and Flexible Electrode Materials |
| 指導教授: |
許聯崇
Hsu, Lien-Chung Steve |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 奈米銀線 、奈米碳管 、拉伸彈性電極 、硫醇化奈米銀線 、π-π堆疊作用力 |
| 外文關鍵詞: | silver nanowire, carbon nanotube, stretchable electrode, thiolation silver nanowire, π-π stacking reaction |
| 相關次數: | 點閱:143 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用低壓抽氣沉積法及乾膜轉印法製備硫醇化奈米銀線 (Thiolation silver nanowires)和奈米碳管 (Carbon nanotubes) 之奈米複合三層導電膜拉伸彈性電極材料。不同於以往文獻研究的單層導電膜或奈米複合導電膜材料,藉由結合奈米銀線的良好導電性及奈米碳管的優異機械性質,製作出奈米複合三層導電膜,以改良可拉伸彈性電極之性質。
在製作奈米複合三層導電膜前,首先將奈米銀線與苯甲基硫醇 (Benzyl mercaptan) 在溶液中進行混摻,使奈米銀線與硫醇官能基產生 硫-銀鍵結,即為硫醇化奈米銀線;接著加入奈米碳管,使得苯甲基硫醇化奈米銀線上的苯環分子與奈米碳管表面產生π-π堆疊作用力。期望能夠改善奈米銀線間的接觸並幫助奈米銀線與奈米碳管間之接著,且製作而成的三層導電膜拉伸彈性電極 (CNT/S-AgNW/CNT) 能夠在經過高拉伸率、多次拉伸及彎曲形變疲勞測試下,有效穩定R/R0電阻值的變化。
將硫醇化前後之三層CNT/AgNW/CNT導電膜與單層奈米銀線、奈米碳管導電膜拉伸彈性電極進行一系列電性量測、電子顯微鏡表面觀察及5,000次以上的拉伸、彎曲疲勞度測試,相較於硫醇化前的三層導電膜電極和單層導電膜電極皆大於10% 的R/R0變化量,CNT/S-AgNW/CNT之最大R/R0變化量僅3% 左右,表示硫醇化奈米銀線與奈米碳管之三層導電膜材料,經過多次形變後確實能夠有效穩定R/R0電阻值的變化;而在電子顯微鏡觀察下,電極表面會產生波浪狀結構,能夠抵銷拉伸過程中所帶來的長度變化。
In this work, stretchable nanocomposite electrodes were successfully fabricated by vacuum evacuation and transferring to PDMS. These electrodes consisted of silver nanowires (AgNW) and carbon nanotubes (CNTs), which could enhance mechanical compliance and electrical conductivity under deformation. They also have excellent properties such as flexibility, stretchability, and bending. The results show that, conductivity is improved when containing more AgNW, although this would lead to increasing resistance change (R/R0). However, adding CNT could help to stabilize R/R0 after repeat stretch-recovery treatment. Before modification, the best nanocomposite electrode was CNT/AgNW/CNT. The R/R0 increased 87% under 0%-60% strain after 10,000 repeat stretch-recovery treatment. In order to decrease R/R0 after treatment, AgNW was thiolated by benzyl mercaptan to form the S-Ag bonding and π-π stacking reaction between CNT/S-AgNW. After 10,000 stretch-recovery treatment, the R/R0 of CNT/S-AgNW/CNT electrode increased by only 3%. This is because benzyl mercaptan is a kind of coupling molecule that helps the CNT and AgNW structure to arrange more closely. As a result, we observed the formation of buckles instead of cracks by SEM, which help to stabilize resistance during long-term stretch-recovery treatment.
[1]"Emerging Displays Report - Transparent Electrode Technology," IHS Technology, (2013).
[2]張肇哲 and 鄞盟松. "可拉伸式導電材料發展與應用趨勢," 工業技術研究, (2015).
[3]"Tretchable Electronics and Electrics 2015-2025: Technologies, Markets, Forecasts," IDTechEx, (2015).
[4]G. H. Gelinck, H. E. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, "Flexible active-matrix displays and shift registers based on solution-processed organic transistors," Nat Mater, Vol. 3, pp. 106-10 (2004).
[5]S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nat Nanotechnol, Vol. 5, pp. 574-8 (2010).
[6]Y. Sun and J. A. Rogers, "Inorganic Semiconductors for Flexible Electronics," Adv Mater, Vol. 19, pp. 1897-1916 (2007).
[7]J. A. Rogers, T. Someya, and Y. Huang, "Materials and Mechanics for Stretchable Electronics," Science, Vol. 327, pp. 1603-1607 (2010).
[8]T. Takahashi, K. Takei, A. G. Gillies, R. S. Fearing, and A. Javey, "Carbon nanotube active-matrix backplanes for conformal electronics and sensors," Nano Lett, Vol. 11, pp. 5408-13 (2011).
[9]H. P. Wang, D. Zhou, J. Cao, and R. Lindeke, "A Skin-Like Pressure Sensor Array Based on Silver Nanowires and Conductive Elastomer," pp. V001T01A010 (2013).
[10]M. A. Darabi, A. Khosrozadeh, Q. Wang, and M. Xing, "Gum Sensor: A Stretchable, Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum Membrane," ACS Appl Mater Interfaces, Vol. 7, pp. 26195-205 (2015).
[11]G. W. Huang, H. M. Xiao, and S. Y. Fu, "Wearable Electronics of Silver-Nanowire/Poly(dimethylsiloxane) Nanocomposite for Smart Clothing," Sci Rep, Vol. 5, pp. 13971 (2015).
[12]D. J. Lipomi, B. C. Tee, M. Vosgueritchian, and Z. Bao, "Stretchable organic solar cells," Adv Mater, Vol. 23, pp. 1771-5 (2011).
[13]D. J. Lipomi and Z. Bao, "Stretchable, elastic materials and devices for solar energy conversion," Energy & Environmental Science, Vol. 4, pp. 3314 (2011).
[14]K.-W. Seo, Y.-J. Noh, S.-I. Na, and H.-K. Kim, "Random mesh-like Ag networks prepared via self-assembled Ag nanoparticles for ITO-free flexible organic solar cells," Solar Energy Materials and Solar Cells, Vol. 155, pp. 51-59 (2016).
[15]M. Jung, J. Kim, J. Noh, N. Lim, C. Lim, G. Lee, J. Kim, H. Kang, K. Jung, A. D. Leonard, J. M. Tour, and G. Cho, "All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-bit RF Tag on Plastic Foils," IEEE Transactions on Electron Devices, Vol. 57, pp. 571-580 (2010).
[16]Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, "Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells," Advanced Functional Materials, Vol. 21, pp. 1076-1081 (2011).
[17]S. Park, M. Vosguerichian, and Z. Bao, "A review of fabrication and applications of carbon nanotube film-based flexible electronics," Nanoscale, Vol. 5, pp. 1727-52 (2013).
[18]T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya. "A Rubberlike Stretchable Active Matrix Using Elastic Conductors," (2008).
[19]J. Alden, H. Dai, M. Knapp, S. Na, H. Pakbaz, F. Pschenitzka, X. Quan, M. Spaid, A. Winoto, and J. Wolk, "Nanowires-based transparent conductors," ed: Google Patents,(2007).
[20]J. S. Alden, H. Dai, M. R. Knapp, S. Na, H. Pakbaz, F. Pschenitzka, X. Quan, M. A. Spaid, A. Winoto, and J. Wolk. "Transparent conductors comprising metal nanowires," (2011).
[21]P. M. Allemand, H. Dai, S. Na, H. Pakbaz, F. Pschenitzka, X. Quan, J. Sepa, and M. A. Spaid, "Nanowire-based transparent conductors and applications thereof," ed: Google Patents,(2012).
[22]A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, "Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique," Nano Research, Vol. 3, pp. 564-573 (2010).
[23]S. Zhu, Y. Gao, B. Hu, J. Li, J. Su, Z. Fan, and J. Zhou, "Transferable self-welding silver nanowire network as high performance transparent flexible electrode," Nanotechnology, Vol. 24, pp. 335202 (2013).
[24]J. Lee, J. Y. Woo, J. T. Kim, B. Y. Lee, and C.-S. Han, "Synergistically Enhanced Stability of Highly Flexible Silver Nanowire/Carbon Nanotube Hybrid Transparent Electrodes by Plasmonic Welding," ACS Appl Mater Interfaces, Vol. 6, pp. 10974-10980 (2014).
[25]S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, M. Y. Yang, and S. H. Ko, "Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics," Adv Mater, Vol. 26, pp. 5808-14 (2014).
[26]J. Kim, Y. S. Nam, M. H. Song, and H. W. Park, "Large Pulsed Electron Beam Welded Percolation Networks of Silver Nanowires for Transparent and Flexible Electrodes," ACS Appl Mater Interfaces, Vol. 8, pp. 20938-45 (2016).
[27]P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, "Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network," Adv Mater, Vol. 24, pp. 3326-32 (2012).
[28]J. H. Lee, P. Lee, D. Lee, S. S. Lee, and S. H. Ko, "Large-Scale Synthesis and Characterization of Very Long Silver Nanowires via Successive Multistep Growth," Crystal Growth & Design, Vol. 12, pp. 5598-5605 (2012).
[29]J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, and S. H. Ko, "Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel," Nanoscale, Vol. 4, pp. 6408-14 (2012).
[30]J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee, J. Yeo, S. S. Lee, T.-S. Kim, D. Lee, and S. H. Ko, "Room-Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting-Polymer-Assisted Joining for a Flexible Touch-Panel Application," Advanced Functional Materials, Vol. 23, pp. 4171-4176 (2013).
[31]S. Wang, Y. Tian, S. Ding, and C. Wang, "The role of chloride ions in rapid synthesis of ultra-long silver nanowires for flexible electrodes," Materials Research Express, Vol. 3, pp. 075007 (2016).
[32]J. Y. Woo, K. K. Kim, J. Lee, J. T. Kim, and C. S. Han, "Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors," Nanotechnology, Vol. 25, pp. 285203 (2014).
[33]S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, "Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics," Advanced Functional Materials, Vol. 25, pp. 3114-3121 (2015).
[34]P. Lee, J. Ham, J. Lee, S. Hong, S. Han, Y. D. Suh, S. E. Lee, J. Yeo, S. S. Lee, D. Lee, and S. H. Ko, "Highly Stretchable or Transparent Conductor Fabrication by a Hierarchical Multiscale Hybrid Nanocomposite," Advanced Functional Materials, Vol. 24, pp. 5671-5678 (2014).
[35]M. S. Lee, K. Lee, S. Y. Kim, H. Lee, J. Park, K. H. Choi, H. K. Kim, D. G. Kim, D. Y. Lee, S. Nam, and J. U. Park, "High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures," Nano Lett, Vol. 13, pp. 2814-21 (2013).
[36]Y. Oh, K.-Y. Chun, E. Lee, Y.-J. Kim, and S. Baik, "Functionalized nano-silver particles assembled on one-dimensional nanotube scaffolds for ultra-highly conductive silver/polymer composites," Journal of Materials Chemistry, Vol. 20, pp. 3579 (2010).
[37]K. Y. Chun, Y. Oh, J. Rho, J. H. Ahn, Y. J. Kim, H. R. Choi, and S. Baik, "Highly conductive, printable and stretchable composite films of carbon nanotubes and silver," Nat Nanotechnol, Vol. 5, pp. 853-7 (2010).
[38]J. Song and S. Wang, "Strechable electronics," (2013).
[39]K. D. Harris, A. L. Elias, and H. J. Chung, "Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies," Journal of Materials Science, Vol. 51, pp. 2771-2805 (2015).
[40]X. Yu, B. Mahajan, W. Shou, and H. Pan, "Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors," Micromachines, Vol. 8, pp. 7 (2016).
[41]J. H. A. D.H. Kim, W.M. Choi, H.S. Kim, T.H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers. "Stretchable and Foldable Silicon Integrated Circuits," Science (2008).
[42]W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Biaxially Stretchable “Wavy” Silicon Nanomembranes," Nano Lett, Vol. 7, pp. 1655-1663 (2007).
[43]D. S. Gray, J. Tien, and C. S. Chen, "High-Conductivity Elastomeric Electronics," Adv Mater, Vol. 16, pp. 393-397 (2004).
[44]X. Wang, H. Hu, Y. Shen, X. Zhou, and Z. Zheng, "Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms," Adv Mater, Vol. 23, pp. 3090-4 (2011).
[45]F. Xu, X. Wang, Y. Zhu, and Y. Zhu, "Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors," Advanced Functional Materials, Vol. 22, pp. 1279-1283 (2012).
[46]J. Ge, H. B. Yao, X. Wang, Y. D. Ye, J. L. Wang, Z. Y. Wu, J. W. Liu, F. J. Fan, H. L. Gao, C. L. Zhang, and S. H. Yu, "Stretchable conductors based on silver nanowires: improved performance through a binary network design," Angew Chem Int Ed Engl, Vol. 52, pp. 1654-9 (2013).
[47]F. Xu and Y. Zhu, "Highly conductive and stretchable silver nanowire conductors," Adv Mater, Vol. 24, pp. 5117-22 (2012).
[48]J. T. Han, B. H. Jeong, S. H. Seo, K. C. Roh, S. Kim, S. Choi, J. S. Woo, H. Y. Kim, J. I. Jang, D. C. Shin, S. Jeong, H. J. Jeong, S. Y. Jeong, and G. W. Lee, "Dispersant-free conducting pastes for flexible and printed nanocarbon electrodes," Nat Commun, Vol. 4, pp. 2491 (2013).
[49]Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, N. I. Rabiah, Z. Chen, J. W. Chung, C. Linder, M. F. Toney, B. Murmann, and Z. Bao, "A highly stretchable, transparent, and conductive polymer," Science Advances, Vol. 3, (2017).
[50]Y. Zhu and F. Xu, "Buckling of aligned carbon nanotubes as stretchable conductors: a new manufacturing strategy," Adv Mater, Vol. 24, pp. 1073-7 (2012).
[51]S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers," Nat Mater, Vol. 9, pp. 859-64 (2010).
[52]D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, "Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes," Nat Nanotechnol, Vol. 6, pp. 788-92 (2011).
[53]W. Yuan, W. Gu, J. Lin, and Z. Cui, "Flexible and Stretchable Hybrid Electronics Systems for Wearable Applications," SID Symposium Digest of Technical Papers, Vol. 47, pp. 668-671 (2016).
[54]T. Kim, A. Canlier, G. H. Kim, J. Choi, M. Park, and S. M. Han, "Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate," ACS Appl Mater Interfaces, Vol. 5, pp. 788-94 (2013).
[55]C. H. Song, C. J. Han, B. K. Ju, and J. W. Kim, "Photoenhanced Patterning of Metal Nanowire Networks for Fabrication of Ultraflexible Transparent Devices," ACS Appl Mater Interfaces, Vol. 8, pp. 480-9 (2016).
[56]P. Kou, L. Yang, C. Chang, and S. He, "Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach," Sci Rep, Vol. 7, pp. 42052 (2017).
[57]E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, "Self-limited plasmonic welding of silver nanowire junctions," Nat Mater, Vol. 11, pp. 241-9 (2012).
[58]G. W. Huang, H. M. Xiao, and S. Y. Fu, "Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability," Nanoscale, Vol. 6, pp. 8495-502 (2014).
[59]T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, and K. Suganuma, "Fabrication of silver nanowire transparent electrodes at room temperature," Nano Research, Vol. 4, pp. 1215-1222 (2011).
[60]S. P. Chen and Y. C. Liao, "Highly stretchable and conductive silver nanowire thin films formed by soldering nanomesh junctions," Phys Chem Chem Phys, Vol. 16, pp. 19856-60 (2014).
[61]J. Ge, H. B. Yao, X. Wang, Y. D. Ye, J. L. Wang, Z. Y. Wu, J. W. Liu, F. J. Fan, H. L. Gao, C. L. Zhang, and S. H. Yu, "Stretchable Conductors Based on Silver Nanowires: Improved Performance through a Binary Network Design," Angewandte Chemie International Edition, Vol. 52, pp. 1654-1659 (2013).
[62]X. Ho, J. Nie Tey, W. Liu, C. Kweng Cheng, and J. Wei, "Biaxially stretchable silver nanowire transparent conductors," Journal of Applied Physics, Vol. 113, pp. 044311 (2013).
[63]H. Ding, M. Zhong, H. Wu, S. Park, J. W. Mohin, L. Klosterman, Z. Yang, H. Yang, K. Matyjaszewski, and C. J. Bettinger, "Elastomeric Conducting Polyaniline Formed Through Topological Control of Molecular Templates," ACS Nano, Vol. 10, pp. 5991-8 (2016).
[64]K. Mukai, K. Asaka, K. Kiyohara, T. Sugino, I. Takeuchi, T. Fukushima, and T. Aida, "High performance fully plastic actuator based on ionic-liquid-based bucky gel," Electrochimica Acta, Vol. 53, pp. 5555-5562 (2008).
[65]C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, "Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications," The Journal of Physical Chemistry B, Vol. 109, pp.13857-13870 (2005).
[66]T. Quang Huy, N. Van Quy, and L. Anh-Tuan, "Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives," Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol. 4, pp. 033001 (2013).
[67]K. M. M. Abou El-Nour, A. a. Eftaiha, A. Al-Warthan, and R. A. A. Ammar, "Synthesis and applications of silver nanoparticles," Arabian Journal of Chemistry, Vol. 3, pp. 135-140 (2010).
[68]M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, "Strong, transparent, multifunctional, carbon nanotube sheets," Science, Vol. 309, pp. 1215-9 (2005).
[69]Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, "Transparent, Conductive Carbon Nanotube Films," Science, Vol. 305, pp. 1273-1276 (2004).
[70]H. H. Khaligh and I. A. Goldthorpe, "Failure of silver nanowire transparent electrodes under current flow," Nanoscale Research Letters, Vol. 8, pp. 235 (2013).
[71]J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, "Electrical breakdown of nanowires," Nano Lett, Vol. 11, pp. 4647-51 (2011).
[72]H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, "Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers," Journal of the American Chemical Society, Vol. 115, pp. 9389-9401 (1993).
[73]A. Ulman, "Formation and Structure of Self-Assembled Monolayers," Chemical Reviews, Vol. 96, pp. 1533-1554 (1996).
[74]J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology," Chemical Reviews, Vol. 105, pp. 1103-1170 (2005).
[75]C. M. Ajmal, M. M. Menamparambath, H. R. Choi, and S. Baik, "Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires," Nanotechnology, Vol. 27, pp. 225603 (2016).
[76]C. A. Hunter and J. K. M. Sanders, "The nature of .pi.-.pi. interactions," Journal of the American Chemical Society, Vol. 112, pp. 5525-5534 (1990).
[77]D.-Q. Yang, J.-F. Rochette, and E. Sacher, "Spectroscopic Evidence for π−π Interaction between Poly(diallyl dimethylammonium) Chloride and Multiwalled Carbon Nanotubes," The Journal of Physical Chemistry B, Vol. 109, pp. 4481-4484 (2005).
[78]D.-Q. Yang, J.-F. Rochette, and E. Sacher, "Functionalization of Multiwalled Carbon Nanotubes by Mild Aqueous Sonication," The Journal of Physical Chemistry B, Vol. 109, pp. 7788-7794 (2005).
[79]R. J. Chen, Y. Zhang, D. Wang, and H. Dai, "Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization," Journal of the American Chemical Society, Vol. 123, pp. 3838-3839 (2001).
[80]N. Naotoshi, T. Yasuhiko, and M. Hiroto, "Water-Soluble Single-Walled Carbon Nanotubes via Noncovalent Sidewall-Functionalization with a Pyrene-Carrying Ammonium Ion," Chemistry Letters, Vol. 31, pp. 638-639 (2002).
[81]D. Q. Yang, B. Hennequin, and E. Sacher, "XPS Demonstration of π−π Interaction between Benzyl Mercaptan and Multiwalled Carbon Nanotubes and Their Use in the Adhesion of Pt Nanoparticles," Chemistry of Materials, Vol. 18, pp. 5033-5038 (2006).
[82]G.-W. Yang, G.-Y. Gao, G.-Y. Zhao, and H.-L. Li, "Effective adhesion of Pt nanoparticles on thiolated multi-walled carbon nanotubes and their use for fabricating electrocatalysts," Carbon, Vol. 45, pp. 3036-3041 (2007).
[83]L. Chen, G. Hu, G. Zou, S. Shao, and X. Wang, "Efficient anchorage of Pd nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation," Electrochemistry Communications, Vol. 11, pp. 504-507 (2009).
[84]B. B. He, U. Preckwinkel, and K. L. Smith, "Fundamentals of two-dimensional X-Ray diffraction," Advances in X-ray Analysis, Vol. 43, pp. 273-280 (2002).
[85]林麗娟, "X光繞射原理及其應用," 工業材料雜誌, Vol. 86, pp. 100-109 (1994).
[86]D. Kumar, Kavita, K. Singh, V. Verma, and H. S. Bhatti, "Microwave-assisted synthesis and characterization of silver nanowires by polyol process," Applied Nanoscience, Vol. 5, pp. 881-890 (2014).
[87]G. Ovejero, J. L. Sotelo, M. D. Romero, A. Rodríguez, M. A. Ocaña, G. Rodríguez, and J. García, "Multiwalled Carbon Nanotubes for Liquid-Phase Oxidation. Functionalization, Characterization, and Catalytic Activity," Industrial & Engineering Chemistry Research, Vol. 45, pp. 2206-2212 (2006).
[88]X. Wang, Z. Z. Yong, Q. W. Li, P. D. Bradford, W. Liu, D. S. Tucker, W. Cai, H. Wang, F. G. Yuan, and Y. T. Zhu, "Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites," Materials Research Letters, Vol. 1, pp. 19-25 (2012).
[89]L. Hu, W. Yuan, P. Brochu, G. Gruner, and Q. Pei, "Highly stretchable, conductive, and transparent nanotube thin films," Applied Physics Letters, Vol. 94, pp. 161108 (2009).
[90]J. Wang, J. Jiu, T. Araki, M. Nogi, T. Sugahara, S. Nagao, H. Koga, P. He, and K. Suganuma, "Silver Nanowire Electrodes: Conductivity Improvement Without Post-treatment and Application in Capacitive Pressure Sensors," Nano-Micro Letters, Vol. 7, pp. 51-58 (2014).
[91]Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, "Evidence for the Monolayer Assembly of Poly(vinylpyrrolidone) on the Surfaces of Silver Nanowires," The Journal of Physical Chemistry B, Vol. 108, pp. 12877-12881 (2004).
[92]A. Stewart, S. Zheng, M. R. McCourt, and S. E. J. Bell, "Controlling Assembly of Mixed Thiol Monolayers on Silver Nanoparticles to Tune Their Surface Properties," ACS Nano, Vol. 6, pp. 3718-3726 (2012).
[93]L. Hashmi, P. Sana, M. M. Malik, A. H. Siddiqui, and M. S. Qureshi, "Novel Fork Architectures of Ag2S Nanoparticles Synthesized through In Situ Self-Assembly inside Chitosan Matrix," Nano Hybrids, Vol. 1, pp. 23-43 (2012).
[94]J. L. Castro, M. R. Lopez-Ramirez, S. P. Centeno, and J. C. Otero, "Adsorption of mercaptoacetic acid on a colloidal silver surface as investigated by Raman spectroscopy," Biopolymers, Vol. 74, pp. 141-5 (2004).
[95]A. Kudelski, "Structures of monolayers formed from different HS-(CH2)2-X thiols on gold, silver and copper: comparitive studies by surface-enhanced Raman scattering," Journal of Raman Spectroscopy, Vol. 34, pp. 853-862 (2003).
[96]K. Rajalingam, L. Hallmann, T. Strunskus, A. Bashir, C. Woll, and F. Tuczek, "Self-assembled monolayers of benzylmercaptan and para-cyanobenzylmercaptan on gold: surface infrared spectroscopic characterization," Physical Chemistry Chemical Physics, Vol. 12, pp. 4390-4399 (2010).
[97]P. Ramasamy, D.-M. Seo, S.-H. Kim, and J. Kim, "Effects of TiO2 shells on optical and thermal properties of silver nanowires," Journal of Materials Chemistry, Vol. 22, pp. 11651 (2012).
[98]C. J. Murphy, A. M. Gole, S. E. Hunyadi, and C. J. Orendorff, "One-dimensional colloidal gold and silver nanostructures," Inorg Chem, Vol. 45, pp. 7544-54 (2006).
[99]L. Li, T. Zhang, Y. Liu, and C. Zhu, "Flexible conductor fabrication via silver nanowire deposition on a polydopamine-modified pre-strained substrate," Journal of Materials Science: Materials in Electronics, Vol. 27, pp. 3193-3201 (2015).