| 研究生: |
阮英書 Nguyen Anh Thu |
|---|---|
| 論文名稱: |
水熱法與浸漬法製備p-Ag3PO4-n-BaTiO3異質接面薄膜於FTO基板及其光電化學水分解相關應用 Hydrothermal and Impregnating Fabrication of p-Ag3PO4-n-BaTiO3 Heterojunction films on Fluorine-doped Tin Oxide substrates and Their Application in Photoelectrochemical Water Splitting |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 尖端材料國際碩士學位學程 International Curriculum for Advanced Materials Program |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 水熱法 、浸漬沉積法 、BaTiO3奈米棒陣列薄膜 、Ag3PO4奈米顆粒 、p-Ag3PO4-n-BaTiO3異質接面薄膜 、壓電光電化學水分解 |
| 外文關鍵詞: | hydrothermal synthesis, impregnating deposition, BaTiO3 nanorod array film, Ag3PO4 nanoparticle, p-Ag3PO4-n-BaTiO3 heterojunction film, piezophotoelectrochemical water splitting |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究報告了在氟摻雜氧化錫基板上製備 p-Ag3PO4-n-BaTiO3 異質結薄膜。由於 BaTiO3 的高壓電響應和 Ag3PO4 的窄的能隙,它們的接合有利於在壓電光電化學 (PPEC) 水分解中的應用。
分別使用兩階段水熱法和浸漬沉積法合成了單獨的 BaTiO3 奈米棒陣列和 Ag3PO4 奈米顆粒形貌的薄膜。使用浸漬沉積法在獲得的 BaTiO3 納米棒陣列上形成不同數量的 Ag3PO4 納米顆粒以形成異質接面薄膜。
X射線衍射和掃描電子顯微鏡分別用於確定樣品的相、結晶度和形態。 X射線光電子能譜用於研究樣品的元素組成、化學計量、化學狀態和表面污染。紫外-可見光譜用於測量樣品的光學性質。紫外光電子能譜儀用於檢查樣品的功函數和價帶最大值。壓電力顯微鏡用於確定樣品的壓電常數。通過線性掃描伏安法 (LSV)、莫特-肖特基分析、開路電位 (OCP) 測量和電化學阻抗譜 (EIS) 評估樣品的光電化學性能。
通過奈奎斯特圖的 EIS 測量表明,Ag3PO4-BaTiO3 複合材料在光照下的電荷轉移電阻明顯低於 Ag3PO4 和 BaTiO3 複合材料的電荷轉移電阻。 OCP 測量分別表明了 BaTiO3 、Ag3PO4-BaTiO3 複合材料和 Ag3PO4 在光照下的 n 型和 p 型特性。結果與 Mott-Schottky 結果一致。通過施加一塊玻璃(約 0.675 g)和超聲處理(158 mW,40 kHz)的負載來檢查 PPEC 水分解。 LSV 結果表明,Ag3PO4-BaTiO3 複合材料的性能優於單獨的 Ag3PO4 或 BaTiO3。 Ag3PO4-BaTiO3 複合材料在應力下的最大施加偏置光電流效率在 0.6 V 時約為 0.60%。複合材料表現出的壓電光電流 (~0.95 mA/cm2) 在 0.6 V 的循環研究中穩定可靠,意味著電子-空穴對的低複合。我們的結果表明 Ag3PO4-BaTiO3 複合材料在 PPEC 水分解方面有巨大的前景。
This study reports the fabrication of p-Ag3PO4-n-BaTiO3 heterojunction films on fluorine-doped tin oxide substrates. Because of high piezoelectric response of BaTiO3 and a narrow band gap of Ag3PO4, their coupling is favorable for application in piezophotoelectrochemical (PPEC) water splitting.
The individual BaTiO3 nanorod array and Ag3PO4 nanoparticle films were synthesized using a two-step hydrothermal and an impregnating deposition process, respectively. Various amounts of the Ag3PO4 nanoparticles were decorated on the obtained BaTiO3 nanorod arrays to form the heterojunction films using the impregnating deposition process.
X-ray diffraction and scanning electron microscopy were used to determine the phases and crystallinity and morphology of the samples, respectively. X-ray photoelectron spectroscopy was used to study the elemental compositions, stoichiometry, chemical states, and surface contaminations of the samples. Ultraviolet-visible spectroscopy was employed to determine the optical properties. Ultraviolet photoelectron spectroscopy was utilized to examine the work functions and valence band maximum of the samples. Piezoelectric force microscopy was employed to determine the piezoelectric constant of the samples. Photoelectrochemical performance of the samples was evaluated through linear sweep voltammetry (LSV), Mott-Schottky analysis, open-circuit potential (OCP) measurement, and electrochemical impedance spectroscopy (EIS).
The EIS measurement through Nyquist plots indicated that substantially lower charge transfer resistance for the Ag3PO4-BaTiO3 composite than that of the Ag3PO4 and BaTiO3 under illumination. The OCP measurement indicated n-type and p-type characteristics for the BaTiO3 and Ag3PO4-BaTiO3 composite and for the Ag3PO4 under illumination, respectively. The results are consistent with the Mott-Schottky results. The PPEC water splitting was examined by applying a load of a piece of glass (approximately 0.675 g) and ultrasonication (158 mW, 40 kHz). The LSV results revealed that the Ag3PO4-BaTiO3 composite outperformed either the individual Ag3PO4 or BaTiO3. The maximum applied bias photo-to-current efficiency for the Ag3PO4-BaTiO3 composite under stress was approximately 0.60 % at 0.6 V. The piezophotocurrent (~0.95 mA/cm2) exhibited by the composite was stable and reliable in the cycling study at 0.6 V, implying the low recombination of electron-hole pairs. Our results indicate the great promise of the Ag3PO4-BaTiO3 composite for PPEC water splitting.
[1] F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long, and Z. Cai, "Recent Advances and Applications of Semiconductor Photocatalytic Technology." Applied Sciences, 9(12), 2489, (2019).
[2] M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, and Y. Liu, "Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review." Chemical Engineering Journal, 284, 582-598, (2016).
[3] L. Wang, S. Duan, P. Jin, H. She, J. Huang, Z. Lei, T. Zhang, and Q. Wang, "Anchored Cu (II) tetra (4-carboxylphenyl) porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction." Applied Catalysis B: Environmental, 239, 599-608, (2018).
[4] Y. Yang, Z. Zeng, C. Zhang, D. Huang, G. Zeng, R. Xiao, C. Lai, C. Zhou, H. Guo, and W. Xue, "Construction of iodine vacancy-rich BiOI/Ag@ AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: transformation pathways and mechanism insight." Chemical Engineering Journal, 349, 808-821, (2018).
[5] S. Wang, H. Ang, and M. O. Tade, "Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art." Environment international, 33(5), 694-705, (2007).
[6] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode." Nature, 238(5358), 37-38, (1972).
[7] D. Chatterjee and S. Dasgupta, "Visible light induced photocatalytic degradation of organic pollutants." Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6(2-3), 186-205, (2005).
[8] N. Nor, J. Jaafar, M. Othman, and M. A. Rahman, "A review study of nanofibers in photocatalytic process for wastewater treatment." Jurnal Teknologi, 65, 4, (2013).
[9] Z. Mengting, T. A. Kurniawan, S. Fei, T. Ouyang, M. H. D. Othman, M. Rezakazemi, and S. Shirazian, "Applicability of BaTiO3/graphene oxide (GO) composite for enhanced photodegradation of methylene blue (MB) in synthetic wastewater under UV–vis irradiation." Environmental Pollution, 255, 113182, (2019).
[10] H. She, M. Jiang, P. Yue, J. Huang, L. Wang, J. Li, G. Zhu, and Q. Wang, "Metal (Ni2+/Co2+) sulfides modified BiVO4 for effective improvement in photoelectrochemical water splitting." Journal of colloid and interface science, 549, 80-88, (2019).
[11] L. Malaeb and G. M. Ayoub, "Reverse osmosis technology for water treatment: state of the art review." Desalination, 267(1), 1-8, (2011).
[12] H.-Y. Shu and C.-R. Huang, "Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation process." Chemosphere, 31(8), 3813-3825, (1995).
[13] J. Labanda, J. Sabaté, and J. Llorens, "Modeling of the dynamic adsorption of an anionic dye through ion-exchange membrane adsorber." Journal of Membrane Science, 340(1-2), 234-240, (2009).
[14] S. S. Moghaddam, M. A. Moghaddam, and M. Arami, "Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology." Journal of hazardous materials, 175(1-3), 651-657, (2010).
[15] Y. Wang, X. Sun, T. Xian, G. Liu, and H. Yang, "Photocatalytic purification of simulated dye wastewater in different pH environments by using BaTiO3/Bi2WO6 heterojunction photocatalysts." Optical Materials, 113, 110853, (2021).
[16] D. Ayodhya and G. Veerabhadram, "A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection." Materials today energy, 9, 83-113, (2018).
[17] W. Fan, C. Chen, H. Bai, B. Luo, H. Shen, and W. Shi, "Photosensitive polymer and semiconductors bridged by Au plasmon for photoelectrochemical water splitting." Applied Catalysis B: Environmental, 195, 9-15, (2016).
[18] B. J. Trześniewski, I. A. Digdaya, T. Nagaki, S. Ravishankar, I. Herraiz-Cardona, D. A. Vermaas, A. Longo, S. Gimenez, and W. A. Smith, "Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes." Energy & Environmental Science, 10(6), 1517-1529, (2017).
[19] E. Kusmierek, "Semiconductor electrode materials applied in photoelectrocatalytic wastewater treatment—an overview." Catalysts, 10(4), 439, (2020).
[20] Y. Qu and X. Duan, "Progress, challenge and perspective of heterogeneous photocatalysts." Chemical Society Reviews, 42(7), 2568-2580, (2013).
[21] S. S. Kalanur and H. Seo, "Recent progress in photoelectrochemical water splitting activity of WO3 photoanodes." Topics in Catalysis, 61(9), 1043-1076, (2018).
[22] M. R. Pai, A. M. Banerjee, A. Tripathi, and S. R. Bharadwaj, "Fundamentals and applications of the photocatalytic water splitting reaction." ed: London: Elsevier, 579-581, (2012).
[23] R. Marschall, "Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity." Advanced Functional Materials, 24(17), 2421-2440, (2014).
[24] S. Ni, Y. Su, Z. Ai, J. Hu, Z. Yang, E. S.-W. Kong, and Y. Zhang, "Bandgap tuning and photocatalytic activities of CuSe1–xSx nanoflakes." Ceramics International, 42(1), 211-219, (2016).
[25] J. s. Barrio, L. Lin, X. Wang, and M. Shalom, "Design of a unique energy-band structure and morphology in a carbon nitride photocatalyst for improved charge separation and hydrogen production." ACS Sustainable Chemistry & Engineering, 6(1), 519-530, (2018).
[26] A. Di Mauro, M. Cantarella, G. Nicotra, G. Pellegrino, A. Gulino, M. V. Brundo, V. Privitera, and G. Impellizzeri, "Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications." Scientific reports, 7(1), 1-12, (2017).
[27] G. Gao, Y. Jiao, F. Ma, Y. Jiao, E. Waclawik, and A. Du, "Carbon nanodot decorated graphitic carbon nitride: new insights into the enhanced photocatalytic water splitting from ab initio studies." Physical Chemistry Chemical Physics, 17(46), 31140-31144, (2015).
[28] B. Jing, Z. Ao, Z. Teng, C. Wang, J. Yi, and T. An, "Density functional theory study on the effects of oxygen groups on band gap tuning of graphitic carbon nitrides for possible photocatalytic applications." Sustainable Materials and Technologies, 16, 12-22, (2018).
[29] E. M. Samsudin and S. B. Abd Hamid, "Effect of band gap engineering in anionic-doped TiO2 photocatalyst." Applied Surface Science, 391, 326-336, (2017).
[30] H. Cheng, J. Wang, Y. Zhao, and X. Han, "Effect of phase composition, morphology, and specific surface area on the photocatalytic activity of TiO2 nanomaterials." Rsc Advances, 4(87), 47031-47038, (2014).
[31] J. Xie, Y. Li, W. Zhao, L. Bian, and Y. Wei, "Simple fabrication and photocatalytic activity of ZnO particles with different morphologies." Powder Technology, 207(1-3), 140-144, (2011).
[32] S. Li, J. Chen, F. Zheng, Y. Li, and F. Huang, "Synthesis of the double-shell anatase–rutile TiO2 hollow spheres with enhanced photocatalytic activity." Nanoscale, 5(24), 12150-12155, (2013).
[33] A. H. Mamaghani, F. Haghighat, and C.-S. Lee, "Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification." Applied Catalysis B: Environmental, 269, 118735, (2020).
[34] F. E. Osterloh, "Inorganic materials as catalysts for photochemical splitting of water." Chemistry of Materials, 20(1), 35-54, (2008).
[35] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, "Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances." Chemical Society Reviews, 43(15), 5234-5244, (2014).
[36] B. Roul, M. Kumar, M. K. Rajpalke, T. N. Bhat, and S. Krupanidhi, "Binary group III-nitride based heterostructures: band offsets and transport properties." Journal of Physics D: Applied Physics, 48(42), 423001, (2015).
[37] J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al‐Ghamdi, "Heterojunction photocatalysts." Advanced materials, 29(20), 1601694, (2017).
[38] L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, and G. Cai, "Visible-light-induced WO3/gC3N4 composites with enhanced photocatalytic activity." Dalton Transactions, 42(24), 8606-8616, (2013).
[39] N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A. I. Minett, and J. Chen, "BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity." ACS applied materials & interfaces, 4(7), 3718-3723, (2012).
[40] P. Wang, J. Wang, X. Wang, H. Yu, J. Yu, M. Lei, and Y. Wang, "One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity." Applied Catalysis B: Environmental, 132, 452-459, (2013).
[41] A. Zhu, Q. Zhao, X. Li, and Y. Shi, "BiFeO3/TiO2 nanotube arrays composite electrode: construction, characterization, and enhanced photoelectrochemical properties." ACS applied materials & interfaces, 6(1), 671-679, (2014).
[42] K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, and J. Lu, "In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation." ACS applied materials & interfaces, 7(17), 9023-9030, (2015).
[43] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. Rossetti Jr, and J. Rödel, "BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives." Applied Physics Reviews, 4(4), 041305, (2017).
[44] J. Erhart, "Experiments to demonstrate piezoelectric and pyroelectric effects." Physics Education, 48(4), 438, (2013).
[45] Z. L. Wang, W. Wu, and C. Falconi, "Piezotronics and piezo-phototronics with third-generation semiconductors." MRS Bulletin, 43(12), 922-927, (2018).
[46] L. Wang and Z. L. Wang, "Advances in piezotronic transistors and piezotronics." Nano Today, 37, 101108, (2021).
[47] Z. L. Wang, "Piezotronic and piezophototronic effects." The Journal of Physical Chemistry Letters, 1(9), 1388-1393, (2010).
[48] L. Zhu and Z. L. Wang, "Recent progress in piezo‐phototronic effect enhanced solar cells." Advanced Functional Materials, 29(41), 1808214, (2019).
[49] M. Wang, B. Wang, F. Huang, and Z. Lin, "Enabling PIEZOpotential in PIEZOelectric semiconductors for enhanced catalytic activities." Angewandte Chemie International Edition, 58(23), 7526-7536, (2019).
[50] P. Wang, X. Li, S. Fan, X. Chen, M. Qin, D. Long, M. O. Tadé, and S. Liu, "Impact of oxygen vacancy occupancy on piezo-catalytic activity of BaTiO3 nanobelt." Applied Catalysis B: Environmental, 279, 119340, (2020).
[51] F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer, J. Sort, C. Gattinoni, B. J. Nelson, and S. Pané, "Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation." Iscience, 4, 236-246, (2018).
[52] Y. Zhang, X. Huang, and J. Yeom, "A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination." Nano-Micro Letters, 11(1), 11, (2019).
[53] S. Li, Z. Zhao, D. Yu, J.-Z. Zhao, Y. Su, Y. Liu, Y. Lin, W. Liu, H. Xu, and Z. Zhang, "Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect." Nano Energy, 66, 104083, (2019).
[54] X. Liu, L. Xiao, Y. Zhang, and H. Sun, "Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye." Journal of Materiomics, 6(2), 256-262, (2020).
[55] E. B. Flint and K. S. Suslick, "The temperature of cavitation." Science, 253(5026), 1397-1399, (1991).
[56] L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang, X. Zhang, J. J. Zou, and Z. L. Wang, "Advances in piezo‐phototronic effect enhanced photocatalysis and photoelectrocatalysis." Advanced Energy Materials, 10(15), 2000214, (2020).
[57] Y. Cui, J. Briscoe, Y. Wang, N. V. Tarakina, and S. Dunn, "Enhanced photocatalytic activity of heterostructured ferroelectric BaTiO3/α-Fe2O3 and the significance of interface morphology control." ACS applied materials & interfaces, 9(29), 24518-24526, (2017).
[58] S. Jia, Y. Su, B. Zhang, Z. Zhao, S. Li, Y. Zhang, P. Li, M. Xu, and R. Ren, "Few-layer MoS2 nanosheet-coated KNbO3 nanowire heterostructures: piezo-photocatalytic effect enhanced hydrogen production and organic pollutant degradation." Nanoscale, 11(16), 7690-7700, (2019).
[59] W. Kanzig, "History of ferroelectricity 1938-1955." Ferroelectrics, 74(1), 285-291, (1987).
[60] R. Ashiri, A. H. Moghadam, and R. Ajami, "Obtaining the highly pure barium titanate nanocrystals by a new approach." Journal of Alloys and Compounds, 648, 265-268, (2015).
[61] N. H. Yusoff, R. A. M. Osman, M. S. Idris, K. N. D. K. Muhsen, and N. I. M. Nor, "Dielectric and structural analysis of hexagonal and tetragonal phase BaTiO3." in AIP Conference Proceedings, AIP Publishing LLC, 2203(1), 020038, (2020).
[62] S. Ram, A. Jana, and T. Kundu, "Ferroelectric BaTiO3 phase of orthorhombic crystal structure contained in nanoparticles." Journal of Applied Physics, 102(5), 054107, (2007).
[63] H. Yabuta, M. Watanabe, T. Watanabe, M. Kubota, M. Shimada, T. Koganezawa, I. Hirosawa, N. Kumada, and S. Wada, "Structural investigation of ferroelectric BiFeO3–BaTiO3 solid solutions near the rhombohedral–pseudocubic phase boundary." Applied Physics Letters, 116(25), 252902, (2020).
[64] A. Karvounis, F. Timpu, V. V. Vogler‐Neuling, R. Savo, and R. Grange, "Barium titanate nanostructures and thin films for photonics." Advanced Optical Materials, 8(24), 2001249, (2020).
[65] K. C. Verma, R. Kotnala, and N. Goyal, "Multi-Functionality of Spintronic Materials." in Nanoelectronics: Elsevier, 153-215, (2019).
[66] I. T. Awan, A. H. Pinto, I. Nogueira, V. Bezzon, E. Leite, D. T. Balogh, V. R. Mastelaro, S. Ferreira, and E. Marega Jr, "Insights on the mechanism of solid state reaction between TiO2 and BaCO3 to produce BaTiO3 powders: The role of calcination, milling, and mixing solvent." Ceramics International, 46(3), 2987-3001, (2020).
[67] F. Ambriz-Vargas, I. Velasco-Davalos, R. Thomas, and A. Ruediger, "Nucleation and growth of ultrathin BaTiO3 films on single terminated Nb: SrTiO3 (100) substrates for ferroelectric tunnel junctions." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 34(2), 02M101, (2016).
[68] Y. Nakata, G. Soumagne, T. Okada, and M. Maeda, "Pulsed-laser deposition of barium titanate films and plume dynamics." Applied surface science, 127, 650-654, (1998).
[69] M. Mostafa, K. Ebnalwaled, H. A. Saied, and R. Roshdy, "Effect of laser beam on structural, optical, and electrical properties of BaTiO 3 nanoparticles during sol-gel preparation." Journal of the Korean Ceramic Society, 55(6), 581-589, (2018).
[70] A. Li and W. Liu, "Optical properties of ferroelectric nanocrystal/polymer composites." in Physical Properties and Applications of Polymer Nanocomposites: Elsevier, 108-158, (2010).
[71] Z. Zhou, H. Tang, and H. A. Sodano, "Vertically aligned arrays of BaTiO3 nanowires." ACS applied materials & interfaces, 5(22), 11894-11899, (2013).
[72] J. Gao, H. Shi, J. Yang, T. Li, R. Zhang, and D. Chen, "Influencing factor investigation on dynamic hydrothermal growth of gapped hollow BaTiO3 nanospheres." Nanoscale research letters, 10(1), 1-11, (2015).
[73] J. Gao, H. Shi, H. Dong, R. Zhang, and D. Chen, "Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis." Journal of Nanoparticle Research, 17(7), 1-17, (2015).
[74] H. Tang, Y. Lin, and H. A. Sodano, "Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors." Advanced Energy Materials, 3(4), 451-456, (2013).
[75] Q. Feng, M. Hirasawa, and K. Yanagisawa, "Synthesis of crystal-axis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process." Chemistry of materials, 13(2), 290-296, (2001).
[76] Q. Ma and K. Kato, "Anisotropy in morphology and crystal structure of BaTiO3 nanoblocks." Materials & Design, 107, 378-385, (2016).
[77] F. Maxim, P. Ferreira, P. M. Vilarinho, and I. Reaney, "Hydrothermal synthesis and crystal growth studies of BaTiO3 using Ti nanotube precursors." Crystal Growth and Design, 8(9), 3309-3315, (2008).
[78] K. Woong Lee, K. Siva Kumar, G. Heo, M.-J. Seong, and J.-W. Yoon, "Characterization of hollow BaTiO3 nanofibers and intense visible photoluminescence." Journal of Applied Physics, 114(13), 134303, (2013).
[79] X. Yang, Z. Ren, G. Xu, C. Chao, S. Jiang, S. Deng, G. Shen, X. Wei, and G. Han, "Monodisperse hollow perovskite BaTiO3 nanostructures prepared by a sol–gel–hydrothermal method." Ceramics International, 40(7), 9663-9670, (2014).
[80] Y.-F. Zhu, L. Zhang, T. Natsuki, Y.-Q. Fu, and Q.-Q. Ni, "Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties." ACS applied materials & interfaces, 4(4), 2101-2106, (2012).
[81] K. G. Baiju, B. Murali, and D. Kumaresan, "Synthesis of hierarchical barium titanate micro flowers with superior light-harvesting characteristics for dye sensitized solar cells." Materials Research Express, 5(7), 075503, (2018).
[82] K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara, "Piezoresponse properties of orderly assemblies of BaTiO3 and SrTiO3 nanocube single crystals." Applied Physics Letters, 101(1), 012901, (2012).
[83] S.-M. Jang and S. C. Yang, "Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials." Nanotechnology, 29(23), 235602, (2018).
[84] C. Lausser, D. Zahn, and H. Cölfen, "Barium titanate nanoparticle self-organization in an external electric field." Journal of Materials Chemistry, 21(42), 16978-16982, (2011).
[85] N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa, and A. Gupta, "Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: from nanotubes and nanowires to ordered nanostructures." The Journal of Physical Chemistry C, 112(23), 8634-8642, (2008).
[86] Z.-H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang, and Z. L. Wang, "BaTiO3 nanotubes-based flexible and transparent nanogenerators." The journal of physical chemistry letters, 3(23), 3599-3604, (2012).
[87] R. Patil, P. V. More, G. Jain, P. K. Khanna, and V. Gaikwad, "BaTiO3 nanostructures for H2S gas sensor: Influence of band-gap, size and shape on sensing mechanism." Vacuum, 146, 455-461, (2017).
[88] R. W. G. Wyckoff, "Crystal structure of silver phosphate and silver arsenate." American Journal of Science, 5(56), 107-118, (1925).
[89] X. Ma, B. Lu, D. Li, R. Shi, C. Pan and Y. Zhu, "Origin of photocatalytic activation of silver orthophosphate from first-principles." The Journal of Physical Chemistry C, 115(11), 4680-4687, (2011).
[90] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, "An orthophosphate semiconductor with photooxidation properties under visible-light irradiation." Nature materials, 9(7), 559-564, (2010).
[91] J. L. Gunjakar, Y. K. Jo, I. Y. Kim, J. M. Lee, S. B. Patil, J. C. Pyun, and S. J. Hwang, "A chemical bath deposition route to facet-controlled Ag3PO4 thin films with improved visible light photocatalytic activity." Journal of Solid State Chemistry, 240, 115-121, (2016).
[92] Raudoniene, Jolanta, et al. "Wet-chemistry synthesis of shape-controlled Ag3PO4 crystals and their 3D surface reconstruction from SEM imagery.", Powder Technology, 345, 26-34, (2019).
[93] H. Gao, C. Zheng, H. Yang, X. Niu, and S. Wang, "Construction of a CQDs/Ag3PO4/BiPO4 heterostructure photocatalyst with enhanced photocatalytic degradation of rhodamine B under simulated solar irradiation." Micromachines, 10(9), 557, (2019).
[94] M. Batvandi, A. Haghighatzadeh, and B. Mazinani, "Synthesis of Ag3PO4 microstructures with morphology-dependent optical and photocatalytic behaviors." Applied Physics A, 126(7), 1-16, (2020).
[95] K. Dânoun, R. Tabit, A. Laghzizil, and M. Zahouily, "A novel approach for the synthesis of nanostructured Ag3PO4 from phosphate rock: high catalytic and antibacterial activities." BMC chemistry, 15(1), 1-12, (2021).
[96] Y. Bi, H. Hu, S. Ouyang, G. Lu, J. Cao, and J. Ye, "Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges." Chemical Communications, 48(31), 3748-3750, (2012).
[97] P. Dong, Y. Wang, H. Li, H. Li, X. Ma, and L. Han, "Shape-controllable synthesis and morphology-dependent photocatalytic properties of Ag3PO4 crystals." Journal of Materials Chemistry A, 1(15), 4651-4656, (2013).
[98] J. Zhao, Z. Ji, C. Xu, X. Shen, L. Ma, and X. Liu, "Hydrothermal syntheses of silver phosphate nanostructures and their photocatalytic performance for organic pollutant degradation." Crystal Research and Technology, 49(12), 975-981, (2014).
[99] X. Z. Li, K. L. Wu, C. Dong, S. H. Xia, Y. Ye, and X. W. Wei, "Size-controlled synthesis of Ag3PO4 nanorods and their high-performance photocatalysis for dye degradation under visible-light irradiation." Materials Letters, 130, 97-100, (2014).
[100] R. Sinha, D. Friedrich, G. Zafeiropoulos, E. Zoethout, M. Parente, M. C. van de Sanden, and A. Bieberle-Hütter, "Charge carrier dynamics and photocatalytic activity of {111} and {100} faceted Ag3PO4 particles." The Journal of Chemical Physics, 152, 24, 244710, (2020).
[101] Y. Bi, S. Ouyang, N. Umezawa, J. Cao, and J. Ye, "Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties." Journal of the American Chemical Society, 133(17), 6490-6492, (2011).
[102] R. Chong, X. Cheng, B. Wang, D. Li, Z. Chang, and L. Zhang, "Enhanced photocatalytic activity of Ag3PO4 for oxygen evolution and Methylene blue degeneration: Effect of calcination temperature." International Journal of Hydrogen Energy, 41(4), 2575-2582, (2016).
[103] Q. Y. Liu, Y. F. Zheng, L. Wang, and X. C. Song, "Synthesis of BiIO4/Ag3PO4 nanocomposite with enhanced photocatalytic activity for degradation of phenol." Journal of Nanoparticle Research, 21(2), 1-9, (2019).
[104] B. A. Koiki, B. O. Orimolade, B. N. Zwane, O. V. Nkwachukwu, C. Muzenda, D. Nkosi, and O. A. Arotiba, "The application of FTO-Cu2O/Ag3PO4 heterojunction in the photoelectrochemical degradation of emerging pharmaceutical pollutant under visible light irradiation." Chemosphere, 266, 129231, (2021).
[105] S. Lan, X. Zeng, R. A. Rather, and I. M. C. Lo, "Enhanced trimethoxypyrimidine degradation by piezophotocatalysis of BaTiO3/Ag3PO4 using mechanical vibration and visible light simultaneously." Environmental Science: Nano, 6, 2, 554-564, (2019).
[106] S. Xiong, D. Gong, Y. Deng, C. Feng, R. Tang, Y. Huang, Z. Zhou, L. Li, Y. Wang, and J. Zhao, "Insights into the dual Z-scheme and piezoelectricity co-drive photocatalyst for ultra-speed degradation of nitenpyram.", (2022).
[107] B. Inkson, "Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization." in Materials characterization using nondestructive evaluation (NDE) methods: Elsevier, 17-43, (2016).
[108] P. Makuła, M. Pacia, and W. Macyk, "How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra." ed: ACS Publications, (2018).
[109] W. Doh, V. Papaefthimiou, and S. Zafeiratos, "Applications of synchrotron-based X-ray photoelectron spectroscopy in the characterization of nanomaterials." in Surface science tools for nanomaterials characterization: Springer, 317-366, (2015).
[110] A. Memar, C. M. Phan, and M. O. Tade, "Photocatalytic activity of WO3/Fe2O3 nanocomposite photoanode." international journal of hydrogen energy, 40(28), 8642-8649, (2015).
[111] R. Bengas, H. Lahmar, K. M. Redha, L. Mentar, A. Azizi, G. Schmerber, and A. Dinia, "Electrochemical synthesis of n-type ZnS layers on p-Cu 2 O/n-ZnO heterojunctions with different deposition temperatures." RSC advances, 9(50), 29056-29069, (2019).
[112] W.Zhang, L. Zhou, J. Shi, and H. Deng, “Synthesis of Ag3PO4/G-C3N4 composite with enhanced photocatalytic performance for the photodegradation of diclofenac under visible light irradiation”, Catalysts, 2(45), (2018).
[113] Z. Chen, W. Wang, Z. Zhang, and X. Fang, "High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity." The Journal of Physical Chemistry C, 117(38), 19346-19352, (2013).
[114] F. Chen, Q. Yang, X. Li, G. Zeng, D. Wang, C. Niu, J. Zhao, H. An, T. Xie and Y. Deng, "Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation." Applied Catalysis B: Environmental, 200, 330-342, (2017).
[115] Z. Li, S. Yang, J. Zhou, D. Li, X. Zhou, C. Ge, and Y. Fang, "Novel mesoporous g-C3N4 and BiPO4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances." Chemical Engineering Journal, 241, 344-351, (2014).
[116] B. Liu, Y. Xue, J. Zhang, B. Han, J. Zhang, X. Suo, L. Mu and H. Shi, "Visible-light-driven TiO2/Ag3PO4 heterostructures with enhanced antifungal activity against agricultural pathogenic fungi Fusarium graminearum and mechanism insight." Environmental Science: Nano, 4(1), 255-264, (2017).
[117] Y. Fu, Z. Ren, L. Guo, X. Li, Y. Li, W. Liu, P. Li, J. Wu, and J.Ma, "Piezotronics boosted plasmonic localization and hot electron injection of coralline-like Ag/BaTiO3 nanoarrays for photocatalytic application." Journal of Materials Chemistry C, 9(37), 12596-12604, (2021).
[118] İ. C. Kaya, V. Kalem, and H. Akyildiz, “Hydrothermal synthesis of pseudocubic BaTiO3 nanoparticles using TiO2 nanofibers: Study on photocatalytic and dielectric properties.” International Journal of Applied Ceramic Technology, 16(4), 1557-1569, (2019).
[119] S. Joshi, R.K. Canjeevaram Balasubramanyam, S.J. Ippolito, Y. M. Sabri, A. E. Kandjani, S. K. Bhargava, and M. V. Sunkara, "Straddled band aligned CuO/BaTiO3 heterostructures: role of energetics at nanointerface in improving photocatalytic and CO2 sensing performance." ACS Applied Nano Materials, 1(7), 3375-3388, (2018).
[120] I. C. Amaechi, G. Kolhatkar, A. H. Youssef, D. Rawach, S. Sun, and A. Ruediger, "B-site modified photoferroic Cr 3+-doped barium titanate nanoparticles: microwave-assisted hydrothermal synthesis, photocatalytic and electrochemical properties." RSC advances, 9(36), 20806-20817, (2019).
[121] S. Kappadan, S. Thomas, and N. Kalarikkal, "BaTiO3/ZnO heterostructured photocatalyst with improved efficiency in dye degradation." Materials Chemistry and Physics , 255, 123583, (2020).
[122] S. Nayak, B. Sahoo, T. K. Chaki, and D. Khastgir, "Facile preparation of uniform barium titanate (BaTiO3) multipods with high permittivity: impedance and temperature dependent dielectric behavior." RSC Advances, 4(3), 1212-1224, (2014).
[123] H. Lee, T. H. Kim, J. J. Patzner, H. Lu, J. W. Lee, H. Zhou, W. Chang, M. K. Mahanthappa, E. Y. Tsymbal, A. Gruverman and C. B. Eom, "Imprint control of BaTiO3 thin films via chemically induced surface polarization pinning." Nano letters, 16(4), 2400-2406, (2016).
[124] C. Li, T. Fang, H. Hu, Y. Wang, X. Liu, S. Zhou, J. Fu, and W. Wang, "Synthesis and enhanced bias-free photoelectrochemical water-splitting activity of ferroelectric BaTiO3/Cu2O heterostructures under solar light irradiation." Ceramics International, 47(8), 11379-11386, (2021).
[125] M. H. Zhao, Z. L. Wang, and S. X. Mao, "Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope." Nano Letters, 4(4), 587-590, (2004).
[126] A.Hankin, F. E. Bedoya-Lora, J. C. Alexander, A. Regoutz, and G.H. Kelsall, "Flat band potential determination: avoiding the pitfalls." Journal of Materials Chemistry A, 7(45), 26162-26176, (2019).
[127] C. Cui, P. Zhou, X. Liu, S. W. Or, and S. L. Ho, "Ag3PO4 nanoparticle-decorated Ni/C nanocapsules with tunable electromagnetic absorption properties." AIP Advances, 7(5), 056421, (2017).
[128] R. Bacsa, P. Ravindranathan, and J. P. Dougherty, "Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on titanium substrates." Journal of materials research, 7(2), 423-428, (1992).