簡易檢索 / 詳目顯示

研究生: 李韋葶
Li, Wei-Ting
論文名稱: 系統性調控及估量自組裝單分子層密度以增進有機電晶體效能
Systematically regulate and estimate the density of self-assembled monolayer to enhance the performance of OFET
指導教授: 徐邦昱
Hsu, Bang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 72
中文關鍵詞: 聚(3-己烷噻吩)自組裝單分子層傅立葉轉換
外文關鍵詞: Poly(3-hexylthiophene), self-assembled monolayer, Fourier transform
相關次數: 點閱:145下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 導電高分子擁有柔軟、可撓曲、低成本等優點,因此被廣泛地應用於薄膜電晶體、發光二極體、太陽能等有機電子學領域。但高分子巨觀上雜亂的分子結構會產生許多形貌以及電子結構上的缺陷,導致低載子傳導效率。因此,本研究透過修飾自組裝單分子改變基板的表面性質,並藉由改變單分子層以及高分子間的作用力,控制微觀分子排列行為。透過系統性調整單分子層的密度,微控單分子層與高分子側鏈的互嵌作用,並估量相應的高分子微觀排列有序性。本研究不只成功量測出單分子層表面形貌,更計算出單分子層的空間週期,發現最佳單分子層密度與P3HT側鏈週期高度相關,因此得出微觀分子長程有序排列的條件-高分子和單分子層之間幾何結構必須匹配。
    本實驗成功的估量自組裝單分子層的密度,釐清高分子和單分子層之間微觀幾何結構的關係,對高分子排列有序性與相應的基本電子結構研究推進重要的一步。

    In this study, we systematically regulate the density of self-assembled monolayers (SAM) to control the stacking conformation of semiconducting polymers on the substrate. In order to properly evaluate the density of monolayer, we increased the chain length of the monolayer to enhance the response of atomic force microscope (AFM). Assisted by the elongated SAM molecules, the morphology and the density of the synthesized monolayers were successfully extracted by AFM. After converting the SAM morphology into a one-dimensional frequency spectrum, the spatial period of the monolayer can be estimated. The best monolayer density was found to be highly-correlated to the period of the P3HT side chain. Therefore, when the geometric correlation of the P3HT and the monolayers matches, it is beneficial to order polymers.

    中文摘要 i Extended Abstract ii 目錄 vii 圖目錄 ix 表目錄 xii 第一章、緒論 1 第二章、文獻回顧 4 壹、導電高分子 4 一、高分子薄膜的堆疊結構 4 二、導電高分子介紹 5 三、導電高分子排列的有序性 6 貳、聚噻吩及其衍生物 8 一、聚噻吩及其衍生物介紹 8 二、三烷基噻吩規整性(Regioregular) 9 三、聚(3-己烷噻吩) 11 參、自組裝單分子層(self assembled monolayer, SAM) 13 一、自組裝單分子層介紹 13 二、自組裝單分子層與對導電高分子的影響 14 肆、有機薄膜半導體 17 一、有機薄膜半導體介紹 17 二、有機薄膜電晶體(Organic thin-film transistors, OTFTs) 17 三、有機薄膜電晶體元件結構 18 四、描述元件特性的基本公式 19 第三章、實驗儀器及實驗方法 24 壹、實驗藥品整理 24 貳、實驗儀器整理 26 參、實驗流程 28 一、有機薄膜電晶體製程 28 二、單分子層密度量測實驗 32 肆、檢測儀器 36 一、接觸角量測(contact angle) 36 二、原子力顯微鏡(Atomic Force Microscopy, AFM) 37 三、拉曼光譜儀(Raman spectroscopy) 41 第四章、結果與討論 44 壹、單分子層密度量測實驗 44 一、 自組裝單分子層的沉積 45 二、自組裝單分子層形貌分析 48 貳、有機薄膜電晶體製程 57 一、自組裝單分子層的沉積 57 二、導電高分子的沉積 58 第五章、結論 68 第六章、參考文獻 69

    [1] Hsu, Ben BY, et al. "Ordered polymer nanofibers enhance output brightness in bilayer light-emitting field-effect transistors." Acs Nano 7.3 (2013): 2344-2351.
    [2] Steyrleuthner, Robert, et al. "The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer." Journal of the American Chemical Society 136.11 (2014): 4245-4256.
    [3] Schuettfort, Torben, Lars Thomsen, and Christopher R. McNeill. "Observation of a distinct surface molecular orientation in films of a high mobility conjugated polymer." Journal of the American Chemical Society 135.3 (2013): 1092-1101.
    [4] Brinkmann, Martin. "Structure and morphology control in thin films of regioregular poly (3‐hexylthiophene)." Journal of Polymer Science Part B: Polymer Physics 49.17 (2011): 1218-1233.
    [5] Müller‐Buschbaum, Peter. "The active layer morphology of organic solar cells probed with grazing incidence scattering techniques." Advanced materials 26.46 (2014): 7692-7709.
    [6] Steyrleuthner, Robert, et al. "The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer." Journal of the American Chemical Society 136.11 (2014): 4245-4256.
    [7] Kaloni, Thaneshwor P., et al. "Polythiophene: from fundamental perspectives to applications." Chemistry of Materials 29.24 (2017): 10248-10283.
    [8] Mehmood, Umer, Amir Al-Ahmed, and Ibnelwaleed A. Hussein. "Review on recent advances in polythiophene based photovoltaic devices." Renewable and Sustainable Energy Reviews 57 (2016): 550-561.
    [9] Hotta, Shu, Mamoru Soga, and Nobuo Sonoda. "Novel organosynthetic routes to polythiophene and its derivatives." Synthetic metals 26.3 (1988): 267-279.
    [10] Pringle, Jennifer Mary, et al. "The influence of the monomer and the ionic liquid on the electrochemical preparation of polythiophene." Polymer 46.7 (2005): 2047-2058.
    [11] Lee, Sun Jong, et al. "A facile route of polythiophene nanoparticles via Fe3+‐catalyzed oxidative polymerization in aqueous medium." Journal of Polymer Science Part A: Polymer Chemistry 46.6 (2008): 2097-2107.
    [12] Yamamoto, Takakazu, Ken-ichi Sanechika, and Akio Yamamoto. "Preparation and characterization of poly (thienylene) s." Bulletin of the Chemical Society of Japan 56.5 (1983): 1497-1502.
    [13] Poelking, Carl, and Denis Andrienko. "Effect of polymorphism, regioregularity and paracrystallinity on charge transport in poly (3-hexylthiophene)[P3HT] nanofibers." Macromolecules 46.22 (2013): 8941-8956.
    [14] Ludwigs, Sabine, ed. P3HT Revisited-From Molecular Scale to Solar Cell Devices. Vol. 265. Berlin: Springer, 2014.
    [15] Sirringhaus, Henning, et al. "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers." Nature 401.6754 (1999): 685-688.
    [16] Gargi, Deepak, et al. "Charge transport in highly face-on poly (3-hexylthiophene) films." The Journal of Physical Chemistry C 117.34 (2013): 17421-17428.
    [17] Su, Yu-Wei, Yu-Che Lin, and Kung-Hwa Wei. "Evolving molecular architectures of donor–acceptor conjugated polymers for photovoltaic applications: from one-dimensional to branched to two-dimensional structures." Journal of Materials Chemistry A 5.46 (2017): 24051-24075.
    [18] Love, J. Christopher, et al. "Self-assembled monolayers of thiolates on metals as a form of nanotechnology." Chemical reviews 105.4 (2005): 1103-1170.
    [19] Casalini, Stefano, et al. "Self-assembled monolayers in organic electronics." Chemical Society Reviews 46.1 (2017): 40-71.
    [20] Kim, Do Hwan, et al. "Surface-induced conformational changes in poly (3-hexylthiophene) monolayer films." Langmuir 21.8 (2005): 3203-3206.
    [21] Kobayashi, S., et al. "Control of carrier density by self-assembled monolayers in organic field-effect transistors." Nature materials 3.5 (2004): 317-322.
    [22] Bardeen, John, and Walter Hauser Brattain. "The transistor, a semi-conductor triode." Physical Review 74.2 (1948): 230.
    [23] Bao, Zhenan, Ananth Dodabalapur, and Andrew J. Lovinger. "Soluble and processable regioregular poly (3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility." Applied physics letters 69.26 (1996): 4108-4110.
    [24] Tsumura, Akira, Hiroshi Koezuka, and Torahiko Ando. "Polythiophene field-effect transistor: Its characteristics and operation mechanism." Synthetic metals 25.1 (1988): 11-23.
    [25] Neamen, Donald A.(1992), Semiconductor physics and devices , Mcgraw-Hill
    [26] Gomes, Tiago C., et al. "The Effect of Anodization Parameters on the Aluminum Oxide Dielectric Layer of Thin-Film Transistors." JoVE (Journal of Visualized Experiments) 159 (2020): e60798.
    [27] Lucas V. Barbosa (2013), ‘’Fourier transform time and frequency domains’’ Retrieved from: https://en.wikipedia.org/wiki/Fourier_transform
    [28] Osgood B.(2021), ‘’N-dimensional Fourier Transform’’, Retrieved from:http://mriquestions.com/spatial-frequencies.html
    [29] Chaudhary, Vivek, et al. "Self-assembled H-aggregation induced high performance poly (3-hexylthiophene) Schottky diode." Journal of Applied Physics 122.22 (2017): 225501.

    下載圖示 校內:2023-10-05公開
    校外:2023-10-05公開
    QR CODE