簡易檢索 / 詳目顯示

研究生: 曾旭峰
Zeng, Xu-Feng
論文名稱: 奈米結構於氮化鎵與磷化鋁鎵銦系列發光二極體之研究
Investigation and fabrication of GaN-and AlGaInP-Based light-emitting diodes by nanostructures
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 147
中文關鍵詞: 發光二極體氮化鎵磷化鋁鎵銦奈米柱
外文關鍵詞: LEDs, GaN, AlGaInP, Nanorods
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目標為應用奈米結構來發展高效率的氮化鎵與磷化鋁鎵銦系列發光二極體。於應用奈米結構改善氮化鎵發光二極體之研究中,首先利用電漿處理改善氮化鎵發光二極體的結構輸出功率,希望藉由改善電流分佈,以獲得良好的光電特性。將利用電流阻障層改善發光二極體發光效率之概念,運用於本文,首先運用最佳條件在p型金屬接墊底下做近似絕緣的電漿處理,以期望達成杜絕p型電極注入電流向接墊下方流通之現象,因為接墊下方所發出的光源,容易被接墊遮蔽或反射後被材料本身所吸收,進而造成光輸出的損失,所以接墊下方電流的減少將使發光二極體獲得更高的輸出功率,在20毫安培電流注入下光輸出功率可得到13%的提升。第二部分 進一步探討粗糙化圖型與蝕刻的深寬比大小對氮化鎵發光二極體光電特性的影響。我們成功地證明了具有奈米圖案的氮化鎵發光二極管使用金屬光罩轉印及利用感應式耦合電漿處理 p-type GaN 薄膜表面並應用在氮化鎵發光二極體上,針對感應式耦合電漿的 ICP 功率、處理時間、Cl2/N2氣體流量的變化及通入N2處理對電特性及發光效率的影響加以探討。將應用簡單、低成本奈米等級金屬光罩轉印於氮化鎵發光二極體製作表面圖案式結構,探討400-nm、3-μm和傳統的發光二極體的亮度效率差異,我們亦發現在 20 mA 時輸出功率分別為5.16 mW,4.59mW and 4.28 mW。
    針對氧化鋅鋁Al-doped ZnO (AZO)透明導電薄膜,應用於磷化鋁鎵銦發光二極體上之光電特性研究,並與不同的透明導電薄膜(氧化銦錫;ITO)作比較。先經由探討透明導電薄膜對於P 型磷化鎵之歐姆接觸特性,並將最佳化之結果應用於磷化鋁鎵銦發光二極體之製程上。由於氧化鋅鋁薄膜直接成長在P 型磷化鎵上,無法得到良好的歐姆接觸。但藉由在磷化鎵窗口層表面直接沉積金鈹擴散薄層來形成直接歐姆接觸,在經過最佳之熱處理製程後,可有效改善其接觸特性,可以進一步將低特徵接觸電阻值為2.68×10−4 to 1.52×10−4在發光二極體元件方面,以AZO和ITO透明導電薄膜作為電流擴散層(Current Spreading Layer)應用於表面粗化後之磷化鋁鎵銦發光二極體,在注入電流為20mA 時,其光輸出功率為7.01mW和6.6mW,最大光功率有著49.6%提升,應用於發光二極體上,AZO在具有磷化鎵接觸層之磷化鋁鎵銦發光二極體表現出極佳的電性及穩定性。
    藉由連續性離子層吸附與反應法製備方法,我們製作出奈米柱氧化鋅於磷化鋁鎵銦發光二極體上,然而再使用氧化鋅奈米柱當蝕刻阻擋層蝕刻磷化鎵窗口層,蝕刻後產生磷化鎵奈米柱在磷化鋁鎵銦發光二極體表面上,並量測光電特性,最大光功率有著78.34%提升。
    於奈米結構來增加改善以GaN-based LEDs以及AlGaInP-LEDs光的輸出效率,第一部分,以連續性離子層吸附與反應法製備氧化鋅奈米粒子是透過低溫95度和常壓的環境下製備,並使用連續性離子層吸附與反應法制被氧化鋅奈米粒子在含有二氧化矽的氮化鎵發光二極體表面上,以純水和乙二醇參雜比例來改變顆粒直徑與顆粒密度變化,蝕刻氮化鎵發光二極體表面上二氧化矽後,探討光電特性,在20mA電流注入下與傳統比較,輸出功率有42.7%-49.1%提升。第二部分,以連續性離子層吸附與反應法製備方法,藉由純水和乙二醇參比例,合成不同粒徑之氮化矽奈米柱的磷化鋁鎵銦發光二極體表面上,並利用掃描式電子顯微鏡 (SEM) 及粒徑分析儀觀測氮化矽尺寸及分布狀況,利用合成之氮化矽奈米柱做為遮罩並藉由乾式蝕刻方式進行發光二極體表面粗化,以達提升發光二極體出光效率之目的,於20 mA操作下,元件輸出功率有33.7%提升。

    The main purpose of this dissertation is to develop high efficiencies of GaN- and AlGaInP-based light-emitting diodes (LEDs) by applying nanostructures. Research to improve the GaN light-emitting diodes in the application of nanostructures, improve the light output power of the GaN-based light emitting diodes (LED). In this paper, we used several kinds of plasma on p-GaN.We expect to let the bottom of the p-pad region nearly insulated by using the optimal plasma treatment condition. Because the light below the p-pad will be eclipsed or reflected by the thick p-pad, this result will reduce the efficiency of output power. Therefore, we could get the higher output power by reducing the current below the p-pad region. We can get 13% enhancement in light output power at 20 mA. The second part, the effect of the etching pattern and etching depended on the aspect ratio on the characteristics of the GaN-based LEDs would be discussed. We successfully demonstrated that the GaN-based LEDs with nano-patterns by contact-transferred and mask-embedded lithography (CMEL) and use inductively coupled plasma (ICP) dealing with p-type GaN film surface and applying to the GaN light emitting diodes (LEDs) to discuss how ICP power, time treatment and the changing in Cl2/N2 gas rates influence plasma etching with in-situ N2 treatment on electric characteristics and light output efficiency. we investigate the use of patterned structures in the light-emitting diodes and improve the light extraction efficiency . Applied simple, low-cost, CMEL to texture p-GaN for the fabrication of GaN light-emitting diodes (LEDs) for the LEDs without CMEL, with CMEL-3 μm, and with CMEL-400 nm, We were also found that the 20 mA light output power were 4.28 mW, 4.59 mW, and 5.16 mW, respectively.
    Al-doped ZnO (AZO) thin film contact to AlGaInP-based light emitting diode(LED) was investigated and compared with ITO thin film. We demonstrated a series of properties of different transparent contact layers(TCL) onto p-GaP and applied the optimization to the chip process of LEDs. In order to improve the electrical properties of AZO contact layer to p-GaP, the direct ohmic contact structure is performed by the deposition of an AuBe diffused thin layer on the surface of GaP window layer, After a best annealing treatment process, which can effectively improve the contact characteristics, The specific contact resistances could be further reduced from could be further reduced from 2.68 × 10−4 to 1.52 × 10−4Ω-cm2 Based on the above TCL conditions, AlGaInP LEDs featured with AZO, and ITO film as current spreading layer (CSL) application AlGaInP LED used in surface roughening after. With an injection current of 20 mA, these LEDs light output powers of 7.01mW and 6.6mW, the maximum output power could be enhanced 49.6% , The material of AZO shows the superior electrical properties and reliability. the AZO thin film deposited by electron-beam evaporator could be a transparent electrode application on AlGaInP-based light emitting diode.
    Nanorods ZnO layers were fabricated on the top of the p-GaP window layers of AlGaInP-based LEDs by using Successive Ionic Layer Adsorption and Reaction, (SILAR) method.However GaP window layer with ZnO nanorods mask were etching by ICP process, the maximum output power could be enhanced 78.34% under 20mA current injection as compared with the standard surface LEDs.
    The use nanostructures in order to increase the improvement of GaN-based LEDs and the AlGaInP-LEDs light output efficiency. The First part, the use ZnO nanorods were grown by Successive Ionic Layer Adsorption and Reaction, (SILAR) method. This experiments were carried out at low temperature 95°C and at normal pressure conditions ZnO nanorods with different diameters and densities were grown on SiO2 thin films on surface or GaN-based LEDs by controlling DI water and ethylene glycol rinsing procedures with different solvent volume ratios (water/ethylene glycol) After the SiO2 thin films on GaN-based LEDs was etching by ICP the output power variation voltage variation and wavelength spectrums of GaN-based LEDs were investigated The output power could be enhanced 42.7%–49.1% under 20-mA. The second part, the use ratio of DI water and ethylene glycol by Successive Ionic Layer Adsorption and Reaction, (SILAR) method. The sizes and the distribution of SiNx nanopillars on AlGaInP-based LEDs are observed by Scanning Electron Microscopy (SEM) and Particle Analyzer. we apply SiNx nanopillars as a hard mask to obtain patterned and roughing wafer surface by which the light extraction, the light-output power was significantly increased by a factor of 33.7% than conventional structure under 20-mA operation.

    摘要 I Abstract IV Acknowledgement VIII Contents IX Figure Captions XII Table Captions XVI Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization of Dissertation 4 References 8 Chapter 2 Theory and Experimental Apparatus 14 2.1 The Theory of Light Emitting Diodes 14 2.1.1 Light Efficiency of LEDs 14 2.1.2 Textured on LEDs Surface 17 2.2 Surface roughness of Nanopatterned by Nano-Imprint Lithography 19 2.2.1 Contact-transferred and Mask-Embedded Lithography (CMEL) 19 2.3 Growth of Nanostructurs by Successive Ionic Layer Adsorption and Reaction Method 20 2.4 Experimental Apparatus 24 2.4.1 Metal-Organic Chemical Vapor Deposition(MOCVD) 24 2.4.2 Plasma Enhanced Chemical Vapor Deposition (PECVD) 27 2.4.3 Dry etching and ICP 27 2.4.4 Transparent Conductive Layer (TCL) Deposition 28 2.4.5 Rapid Thermal Annealing 28 2.5 Brief Principle of Measurement Equipment 29 2.5.1 Current-Voltage measure system 29 2.5.2 Electroluminescence (EL) 29 2.5.3 Field-Emission Scanning Electron Microscope 30 2.5.4 Reliability 30 References 32 Chapter 3 Improvement of Optical and Electrical Characteristics in GaN-Based Light-Emitting Diodes (LEDs) 42 3.1 Enhancement of output power for GaN-based LEDs by treatments of Ar plasma on p-GaN surface 42 3.1.1 Introduction 42 3.1.2 Experimental 44 3.1.3 Results and Discussion 45 3.1.4 Summary 48 Reference 49 3.2 GaN-based LEDs with nano-patterns by contact-transferred and mask-embedded lithography and Cl2/N2 plasma etching 56 3.2.1 Introduction 56 3.2.2 Experimental 58 3.2.3 Results and Discussion 60 3.2.4 Summary 62 Reference 63 Chapter 4 AlGaInP-based LEDs with AuBe-diffused AZO/GaP current spreading layer 72 4.1 Introduction 72 4.2 Experimental 74 4.3 Results and Discussion 76 4.4 Summary 81 Reference 82 Chapter 5 Improving light output power of AlInGaP-based LEDs using GaP nanorods prepared By SILAR method 93 5.1 Introduction 93 5.2 Experimental 94 5.3 Results and Discussion 96 5.4 Summary 100 Reference 101 Chapter 6 Nanostructure on LEDs to Enhancement Light Extraction Efficiency By SILAR Solution Method 107 6.1 SiO2 nanopillars on microscale roughened surface of GaN-based light-emitting diodes by SILAR-based method 107 6.1.1 Introduction 107 6.1.2 Experimental 109 6.1.3 Results and Discussion 111 6.1.4 Summary 113 Reference 115 6.2 SiNx nanopillars on AlGaInP-based light-emitting diodes to enhance light extraction using self-assembly ZnO nanomasks coating by successive ionic layer adsorption and reaction method 121 6.2.1 Introduction 121 6.2.2 Experimental 123 6.2.3 Results and Discussion 125 6.2.4 Summary 130 Reference 132 Chapter 7 Conclusions and Future Works 140 7.1 Conclusions 140 7.2 Future Works 143

    Chapter 1:
    Reference
    [1]R. A. Logan, H. G. White, and W. Wiegmann, “Efficient Green Electroluminescence in Nitrogen-Doped GaP p-n Junctions,” Applied Physics Letters, vol. 13, no. 4, pp. 139-141, 1968.
    [2]W. O. Groves, A. H. Herzog, and M. G. Craford, “The Effect of Nitrogen Doping on GaAs1-xPx Electroluminescent Diodes,” Applied Physics Letters, vol. 19, no. 6, pp. 184-186, 1971.
    [3]J. Nishizawa, K. Suto, and T. Teshima, “Minority‐carrier lifetime measurements of efficient GaAlAs p‐n heterojunctions,” Journal of Applied Physics, vol. 48, no. 8, pp. 3484-3495, 1977.
    [4]R. R. Bradley, R. M. Ash, N. W. Forbes, R. J. M. Griffiths, D. P. Jebb, and H. E. Shephard, “Metalorganic chemical vapour deposition of junction isolated GaAlAs/GaAs LED structures,” Journal of Crystal Growth, vol. 77, no. 1-3, pp. 629-636, 1986.
    [5]F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, “Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes,” Electronics Letters, vol. 32, no. 2, pp. 132-134, 1996.
    [6]M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Applied Physics Letters, vol. 75, no. 16, pp. 2365-2367, 1999.
    [7]S. Nakamura, M. Senoh, N. Iwasa, N. Shin-Ichi, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Japanese Journal of Applied Physics, Part 2 (Letters), vol. 34, no. 10B, pp. L1332-5, 1995.
    [8]T. D. Moustakas, T. Lei, and R. J. Molnar, “Growth of GaN by ECR-assisted MBE,” Physica B, vol. 185, no. 1-4, pp. 36-49, 1993.
    [9]E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2003).
    [10]H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystal-line GaN,” Applied Physics Letters, vol. 15, no. 10, pp. 327-329, 1969.
    [11]J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “Electroluminescence in GaN,” Journal of Luminescence, vol. 4, no. 1, pp. 63-6, 1971.
    [12]H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Japanese Journal of Applied Physics, Part 2 (Letters), vol. 28, no. 12, pp. L2112-14, 1989.
    [13] S. Nakamura, N. Iwasa, and M. Senoh, “Method of manufacturing p-type compound semiconductor,” U.S. Patent 5,306,662, 1994.
    [14]S. Nakamura, and T. Mukai, “High-quality InGaN films grown on GaN films,” Japanese Journal of Applied Physics, Part 2 (Letters), vol. 31, no. 10B, pp. L1457-9, 1992.
    [15]P. Kung, C. J. Sun, A. Saxler, H. Ohsato, and M. Razeghi, “Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates,” Journal of Applied Physics, vol. 75, no. 9, pp. 4515-4519, 1994.
    [16]S. Tanaka, M. Takeuchi, and Y. Aoyagi, “Anti-surfactant in III-nitride epitaxy - Quantum dot formation and dislocation termination,” Japanese Journal of Applied Physics Part 2-Letters, vol. 39, no. 8B, pp. L831-L834 , 2000.
    [17]O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Applied Physics Letters, vol. 76, no. 17, pp. 2361-2363 , 2000.
    [18] S. Nakamura, “Status of GaN LEDs and lasers for solid-state lighting and displays,” OIDA Solid-State Lighting Workshop, Albuquerque, 2002.
    [19]S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN‐based light emitting diodes,” Applied Physics Letters, vol. 66, no. 10, pp. 1249-1251, 1995.
    Chapter 2:
    Reference
    [1]M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Applied Physics Letters, vol. 75, no. 8, pp. 1036-1038, 1999.
    [2]S. Illek, U. Jacob, A. Plossl, P. Stauss, K. Streubel, W. Wegleiter, and R. Wirth, “Buried micro-reflectors boost performance of AlGaInP LEDs,” Compound Semiconductor, vol. 8, no. 1, pp. 39-42, 2002.
    [3]E. Hecht, “OPTICS”4th, Addison Wesley, New York, pp.117-120, 2002.
    [4]E. Hecht, “OPTICS”4th, Addison Wesley, New York, pp.120-123, 2002.
    [5]Neamen, “Semiconductor Physics and Devices Basic Principals”3rd, 2003. “High-lightness AlGaInP light-emitting diodes using surface”, Proc. of SPIE, Vol. 4278, pp. 19-25, 2001.
    [6]I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light emitting diodes,” Applied Physics Letters, vol. 63, no. 16, pp. 2174-2176 , 1993.
    [7]R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesel, G. Borghs, G. H. Dohler, and P. Heremans, “40% efficient thin-film surface-textured light-emitting diodes by optimization of natural lithography,” IEEE Transactions on Electron Devices, vol. 47, no. 7, pp. 1492-1498, 2000.
    [8]H. W. Huang, C. H. Lin, K. Y. Lee, C. C. Yu, J. K. Huang, B. D. Lee, H. C. Kuo, K. M. Leung, and S. C. Wang, “Enhanced light output power of GaN-based vertical-injection light-emitting diodes with a 12-fold photonic quasi-crystal by nano-imprint lithography,” Semiconductor Science and Technology, vol. 24, no. 8,pp.085008 -1–5, 2009.
    [9]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Applied Physics Letters, vol. 84, no. 6, pp. 855-857, 2004.
    [10]R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Applied Physics Letters, vol. 86, no. 22, pp. 221101-1 –3, 2005.
    [11]J. W. Kang, M. S. Oh, Y. S. Choi, C. Y. Cho, T. Y. Park, C. W. Tu, and S. J. Park, “Improved Light Extraction of GaN-Based Green Light-Emitting Diodes with an Antireflection Layer of ZnO Nanorod Arrays,” Electrochemical and Solid State Letters, vol. 14, no. 3, pp. H120-H123, 2011.
    [12]D. S. Leem, T. Lee, and T. Y. Seong, “Enhancement of the light output of GaN-based light-emitting diodes with surface-patterned ITO electrodes by maskless wet-etching,” Solid-State Electronics, vol. 51, no. 5, pp. 793-796, 2007.
    [13]S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science, vol. 272, no. 5258, pp. 85-87, 1996.
    [14]Y. C. Lee, and C.-Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” Journal of Micromechanics and Microengineering, vol. 18, no. 7, pp.075013-075013-7, 2008.
    [15]Nicolau, Y. F., Appl. Surf. Sci., 22/23 (1985)1061.
    [16]Nicolau, Y. F., US Pat., 4 675 207, 1987.
    [17]G. B. Stringfellow, Semiconductors and Semimetals. New York: Academic Press,1985.
    [18]H. C. Casey and M. B. Panish, Heterostructure lasers: part B, materials and operating characteristics. New York: Academic Press, 1978.
    [19]G. B. Stringfellow, Organometallic vapor phase epitaxy: theory and practice. San Diego, CA: Academic Press, 1989.
    [20]H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Improvement of the performance of GaN-based LEDs grown on sapphire substrates patterned by wet and ICP etching,” Solid-State Electronics, vol. 52, no. 6, pp. 962-967, 2008.
    [21]I. Adesida, A. Mahajan, E. Andideh, M. A. Khan, D. T. Olsen, and J. N. Kuznia, “Reactive ion etching of gallium nitride in silicon tetrachloride plasmas,” Applied Physics Letters, vol. 63, no. 20, pp. 2777-2779, 1993.
    [22]D. S. Wuu, C. R. Chung, Y. H. Liu, R. H. Horng, and S. H. Huang, “Deep etch of GaP using high-density plasma for light-emitting diode applications,” Journal of Vacuum Science & Technology B, vol. 20, no. 3, pp. 902-908, 2002.
    Chapter 3-1:
    Reference
    [1]T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, no. 7A, pp. 3976-3981,1999.
    [2]T. Mukai, M. Yamada, and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Japanese Journal of Applied Physics Part 2-Letters, vol. 37, no. 11B, pp. L1358-L1361, 1998.
    [3]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Applied Physics Letters, vol. 84, no. 6, pp. 855-857, 2004.
    [4]S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D.J. Kim, K. I. Min, and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based-light-emitting diodes,” IEEE Photonics Technology Letters, vol. 18, no. 13-16, pp. 1512-1514, 2006.
    [5]C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai, and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Transactions on Electron Devices, vol. 52, no. 10, pp. 2346-2349, 2005.
    [6]S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-based LEDs with an SPS Tunneling contact layer and an ITO transparent contact,” IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 1002-1004, 2004.
    [7]C. H. Kuo, S. J. Chang, Y. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 106, no. 1, pp. 69-72, 2004.
    [8]C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photonics Technology Letters, vol. 18, no. 1-4, pp. 274-276, 2006.
    [9]C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” Journal of Applied Physics, vol. 92, no. 5, pp. 2248-2250, 2002.
    [10]M. A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving Light Output Power of the GaN-Based Vertical-Injection Light-Emitting Diodes by Mg+ Implanted Current Blocking Layer,” IEEE Photonics Technology Letters, vol. 21, no. 9-12, pp. 688-690, 2009.
    [11]J. Nishizawa, M. Koike, and C. C. Jin, “Efficiency of GaAlAs heterostructure red light‐emitting diodes,” Journal of Applied Physics, vol. 54, no. 5, pp. 2807-2812,1983.
    [12]C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light‐emitting diodes,” Applied Physics Letters, vol. 57, no. 27, pp. 2937-2939, 1990.
    [13]H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High‐efficiency InGaAlP/GaAs visible light‐emitting diodes,” Applied Physics Letters, vol. 58, no. 10, pp. 1010-1012, 1991.
    Chapter 3-2:
    Reference
    [1]S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, “Highly reliable nitride-based LEDs with SPS plus ITO upper contacts,” IEEE Journal of Quantum Electronics, vol. 39, no. 11, pp. 1439-1443, 2003.
    [2]C. S. Chang, S. J. Chang, Y. K. Su, Y. C. Lin, Y. P. Hsu, S. C. Shei, S. C. Chen, C. H. Liu, and U. H. Liaw, “InGaN/GaN light-emitting diodes with ITO p-contact layers prepared by RF sputtering,” Semiconductor Science and Technology, vol. 18, no. 4, pp. L21-L23, 2003.
    [3]C. S. Chang, S. J. Chang, Y. K. Su, W. S. Chen, C. F. Shen, S. C. Shei, and H. M. Lo, “Nitride based power chip with indium-tin-oxide p-contact and Al back-side reflector,” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 44, no. 4B, pp. 2462-2464, 2005.
    [4]D. S. Leem, J. Cho, C. Sone, Y. Park, and T. Y. Seong, “Light-output enhancement of GaN-based light-emitting diodes by using hole-patterned transparent indium tin oxide electrodes,” Journal of Applied Physics, vol. 98, no. 7,pp. 076107-1–3, 2005.
    [5]C. C. Yang, C. F. Lin, C. M. Lin, C. C. Chang, K. T. Chen, J. F. Chien, and C. Y. Chang, “Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous p-type GaN:Mg surfaces,” Applied Physics Letters, vol. 93, no. 20,pp.203103-1 –3, 2008.
    [6]S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei, and J. K. Sheu, “Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography,” Applied Physics Letters, vol. 91, no. 1,pp.013504-1 –3 , 2007.
    [7]C. F. Lai, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, W. Y. Yeh, and J. Y. Chi, “Anisotropy of light extraction from two-dimensional photonic crystal light-emitting diodes,” Applied Physics Letters, vol. 91, no. 12, pp.123117-1 –3, 2007.
    [8]I. B. Divliansky, A. Shishido, I. C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Applied Physics Letters, vol. 79, no. 21, pp. 3392-3394, 2001.
    [9]C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Applied Physics Letters, vol. 93, no. 8, pp.081108-1–3, 2008.
    [10]S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science, vol. 272, no. 5258, pp. 85-87, 1996.
    [11]M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C. G. Willson, “Nanofabrication with step and flash imprint lithography,” Journal of Microlithography Microfabrication and Microsystems, vol. 4, no. 1, pp. 011002, 2005.
    [12]D. B. Wolfe, J. C. Love, B. D. Gates, G. M. Whitesides, R. S. Conroy, and M. Prentiss, “Fabrication of planar optical waveguides by electrical microcontact printing,” Applied Physics Letters, vol. 84, no. 10, pp. 1623-1625, 2004.
    [13]Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Applied Physics Letters, vol. 81, no. 3, pp. 562-564, 2002.
    [14]H. W. Huang, C. H. Lin, K. Y. Lee, C. C. Yu, J. K. Huang, B. D. Lee, H. C. Kuo, K. M. Leung, and S. C. Wang, “Enhanced light output power of GaN-based vertical-injection light-emitting diodes with a 12-fold photonic quasi-crystal by nano-imprint lithography,” Semiconductor Science and Technology, vol. 24, no. 8, pp. 085008, 2009.
    [15]C. Y. Yeh, W. C. Lai, T. H. Hsueh, Y. Y. Yang, J. K. Sheu, S. P. Ringer, and B. Gault, “Light Output Improvement of Oxide-Textured InGaN-Based Light-Emitting Diodes by Bias-Assisted Photoelectrochemical Oxidation With Imprint Technique,” IEEE Photonics Technology Letters, vol. 21, no. 9-12, pp. 718-720, 2009.
    [16]H. M. Lo, Y. T. Hsieh, S. C. Shei, Y. C. Lee, X. F. Zeng, W. Y. Weng, N. M. Lin, and S. J. Chang, “AlGaInP LEDs Prepared by Contact-Transferred and Mask-Embedded Lithography,” IEEE Journal of Quantum Electronics, vol. 46, no. 12, pp. 1834-1839, 2010.
    [17]S. Y. Lee, K. K. Choi, H. H. Jeong, E. J. Kim, J. O. Song, J. W. Jeon, and T. Y. Seong, “Effect of oxygen plasma-induced current blocking on the performance of GaN-based vertical light-emitting diodes,” Journal of Vacuum Science & Technology B, vol. 29, no. 4,pp. 041203- 1–5, 2011.
    [18]T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography,” Applied Physics Letters, vol. 91, no. 17, pp. 171114-1–3, 2007.
    [19]S. Tripathy, S. J. Chua, A. Ramam, E. K. Sia, J. S. Pan, R. Lim, G. Yu, and Z. X. Shen, “Electronic and vibronic properties of Mg-doped GaN: The influence of etching and annealing,” Journal of Applied Physics, vol. 91, no. 5, pp. 3398-3407, 2002.
    Chapter 4:
    Reference
    [1]S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 4, pp. 744-748, 2002.
    [2]S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 2, pp. 278-283, 2002.
    [3]S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chang, Y. R. Wu, K. H. Huang, and T. P. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photonics Technology Letters, vol. 9, no. 2, pp. 182-184, 1997.
    [4]C. S. Chang, Y. K. Su, S. J. Chang, P. T. Chang, Y. R. Wu, K. H. Huang, and T. P. Chen, “High-brightness AlGaInP 573-nm light-emitting diode with a chirped multiquantum barrier,” IEEE Journal of Quantum Electronics, vol. 34, no. 1, pp. 77-83, 1998.
    [5]I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally from AlGaAs/GaAs/AlGaAs double heterostrructures,” Applied Physics Letters, vol. 62, no. 2, pp. 131-133, 1993.
    [6]C. F. Shen, S. J. Chang, W. S. Chen, T. K. Ko, C. T. Kuo, and S. C. Shei, “Nitride-based high-power flip-chip LED with double-side patterned sapphire substrate,” IEEE Photonics Technology Letters, vol. 19, no. 9-12, pp. 780-782, 2007.
    [7]K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 2, pp. 321-332, 2002.
    [8]E.-J. Hong, K.-J. Byeon, H. Park, J. Hwang, H. Lee, K. Choi, and H.-S. Kim, “Effect of nano-patterning of p-GaN cladding layer on photon extraction efficiency,” Solid-State Electronics, vol. 53, no. 10, pp. 1099-1102, 2009.
    [9]C. F. Lai, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, W. Y. Yeh, and J. Y. Chi, “Anisotropy of light extraction from two-dimensional photonic crystal light-emitting diodes,” Applied Physics Letters, vol. 91, no. 12,pp. 123117- 1–3 , 2007.
    [10]I. B. Divliansky, A. Shishido, I. C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Applied Physics Letters, vol. 79, no. 21, pp. 3392-3394, 2001.
    [11]C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Applied Physics Letters, vol. 93, no. 8,pp. 081108-1 –3, 2008.
    [12]S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science, vol. 272, no. 5258, pp. 85-87, 1996.
    [13]Y. C. Lee, and C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” Journal of Micromechanics and Microengineering, vol. 18, no. 7,pp. 075013-1 –7, 2008.
    [14]H. M. Lo, Y. T. Hsieh, S. C. Shei, Y. C. Lee, X. F. Zeng, W. Y. Weng, N. M. Lin, and S. J. Chang, “AlGaInP LEDs Prepared by Contact-Transferred and Mask-Embedded Lithography,” IEEE Journal of Quantum Electronics, vol. 46, no. 12, pp. 1834-1839, 2010.
    [15]K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, and A. S. H. Liao, “Two fold efficiency improvement in high-performance AlGaInP light-emitting diodes in the 550-620 nm spectral region using a thick GaP window layer,” Applied Physics Letters, vol. 61, no. 9, pp. 1045-1047, 1992.
    [16]Y. J. Liu, C. H. Yen, K. H. Yu, P. L. Lin, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W.-C. Liu, “Characteristics of an AlGaInP-Based Light Emitting Diode With an Indium-Tin-Oxide (ITO) Direct Ohmic Contact Structure,” IEEE Journal of Quantum Electronics, vol. 46, no. 2, pp. 246-252, 2010.
    [17]H. M. Lo, S. C. Shei, X. F. Zeng, S. J. Chang, and H. Y. Lin, “AlGaInP-Based LEDs with a p(+)-GaP Window Layer and a Thermally Annealed ITO Contact,” IEEE Journal of Quantum Electronics, vol. 47, no. 6, pp. 803-809, 2011.
    [18]T.W. Kuo, S.X. Lin, Y.Y. Hung, J.H. Horng, and M.P. Houng, “Improved Extraction Efficiency of Light-Emitting Diodes by Wet-Etching Modifying AZO Surface Roughness,” IEEE Photonics Technology Letters, vol. 23, no. 6, pp. 362-364, 2011.
    [19]J. J. Chen, Y. K. Su, C. L. Lin, and C. C. Kao, “Light Output Improvement of AlGaInP-Based LEDs With Nano-Mesh ZnO Layers by Nanosphere Lithography,” IEEE Photonics Technology Letters, vol. 22, no. 6, pp. 383-385, 2010.
    [20]C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photonics Technology Letters, vol. 18, no. 1-4, pp. 274-276, 2006.
    [21]P. H. Chen, W. C. Lai, L. C. Peng, C. H. Kuo, C. L. Yeh, J. K. Sheu, and C. J. Tun, “GaN-Based LEDs With AZO:Y Upper Contact,” IEEE Transactions on Electron Devices, vol. 57, no. 1, pp. 134-139, 2010.
    [22]J. K. Sheu, M. L. Lee, Y. S. Lu, and K. W. Shu, “Ga-Doped ZnO Transparent Conductive Oxide Films Applied to GaN-Based Light-Emitting Diodes for improving Light Extraction Efficiency,” IEEE Journal of Quantum Electronics, vol. 44, no. 11-12, pp. 1211-1218, 2008.
    [23]S. J. Chang, W. R. Chen, Y. K. Su, R. C. Tu, W. H. Lan, and H. Chang, “Ohmic contact to p-ZnSe and p-ZnMgSSe,” Electronics Letters, vol. 35, no. 15, pp. 1280-1281, 1999.
    [24]E. Havard, T. Camps, V. Bardinal, L. Salvagnac, C. Armand, C. Fontaine, and S. Pinaud, “Effect of thermal annealing on the electrical properties of indium tin oxide (ITO) contact on Be-doped GaAs for optoelectronic applications,” Semiconductor Science and Technology, vol. 23, no. 3, pp. 035001-1–4, 2008.
    [25]A. E. Vonneida, S. J. Pearton, W. S. Hobson, and C. R. Abernathy, “Interaction of Be and O in GaAs,” Applied Physics Letters, vol. 54, no. 16, pp. 1540-1542, 1989.
    Chapter 5:
    Reference
    [1]K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 2, pp. 321-332, 2002.
    [2]T. Gessmann, and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” Journal of Applied Physics, vol. 95, no. 5, pp. 2203-2216, 2004.
    [3]H. Sugawara, K. Itaya, and G. Hatakoshi, “Hybrid-Type InGaAlP/GaAs Distributed Bragg Reflectors for InGaAlP Light-Emitting Diodes,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 33, no. 11, pp. 6195-6198, 1994.
    [4]T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, and C. Karnutsch, “Omnidirectional reflective contacts for light-emitting diodes,” IEEE Electron Device Letters, vol. 24, no. 11, pp. 683-685, 2003.
    [5]T. Gessmann, and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” Journal of Applied Physics, vol. 95, no. 5, pp. 2203-2216, 2004.
    [6]R. Windisch, S. Meinlschmidt, C. Rooman, L. Zimmermann, B. Dutta, M. Kuijk, P. Kiesel, G. H. Dohler, G. Borghs, and P. Heremans, “Light extraction mechanisms in surface-textured light-emitting diodes,” Proceedings of the SPIE - The International Society for Optical Engineering, vol. 4278, pp. 90-8, 2001.
    [7]Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Optics Express, vol. 17, no. 23, pp. 20991-20997, 2009.
    [8]Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photonics Technology Letters, vol. 14, no. 8, pp. 1064-1066, 2002.
    [9]M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, no. 6B, pp. 4346-4349, 2002.
    [10]H. M. Lo, Y. T. Hsieh, S. C. Shei, Y. C. Lee, X. F. Zeng, W. Y. Weng, N. M. Lin, and S. J. Chang, “AlGaInP LEDs Prepared by Contact-Transferred and Mask-Embedded Lithography,” IEEE Journal of Quantum Electronics, vol. 46, no. 12, pp. 1834-1839, 2010.
    [11]S. C. Shei, S. J. Chang, and P. Y. Lee, “Rinsing Effects on Successive Ionic Layer Adsorption and Reaction Method for Deposition of ZnO Thin Films,” Journal of the Electrochemical Society, vol. 158, no. 3, pp. H208-H213, 2011.
    [12]A. W. Omta, M. F. Kropman, S. Woutersen, and H. J. Bakker, “Negligible effect of ions on the hydrogen-bond structure in liquid water,” Science, vol. 301, no. 5631, pp. 347-349, 2003.
    [13]K. H. Dai, L. S. Wang, D. X. Huang, C. B. Soh, and S. J. Chua, “Influence of Size of ZnO Nanorods on Light Extraction Enhancement of GaN-Based Light-Emitting Diodes,” Chinese Physics Letters, vol. 28, no. 9,pp.098501, 2011.
    [14]C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photonics Technology Letters, vol. 20, no. 5-8, pp. 428-430, 2008.
    [15]R. H. Horng, T. M. Wu, and D. S. Wuu, “Improved light extraction in AlGaInP-based LEDs using a roughened window layer,” Journal of the Electrochemical Society, vol. 155, no. 10, pp. H710-H715, 2008.
    Chapter 6-1:
    Reference
    [1]T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, no. 7A, pp. 3976-3981, 1999.
    [2]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Japanese Journal of Applied Physics Part 2-Letters, vol. 35, no. 1B, pp. L74-L76, 1996.
    [3]I. Akasaki, S. Sota, H. Sakai, T. Tanaka, M. Koike, and H. Amano, “Shortest wavelength semiconductor laser diode,” Electronics Letters, vol. 32, no. 12, pp. 1105-1106, 1996.
    [4]C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based, light-emitting diode by microroughening of the p-GaN surface,” Journal of Applied Physics, vol. 93, no. 11, pp. 9383-9385, 2003.
    [5]J. O. Song, D. S. Leem, J. S. Kwak, Y. Park, S. W. Chae, and T. Y. Seong, “Improvement of the luminous intensity of light-emitting diodes by using highly transparent Ag-indium tin oxide p-type ohmic contacts,” IEEE Photonics Technology Letters, vol. 17, no. 2, pp. 291-293, 2005.
    [6]S. J. An, J. H. Chae, G.-C. Yi, and G. H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays,” Applied Physics Letters, vol. 92, no. 12,pp.121108 -1–3, 2008.
    [7]K. K. Kim, S. d. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Applied Physics Letters, vol. 94, no. 7,pp.071118-1–3, 2009.
    [8]L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai, and J. K. Sheu, “In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer,” Solid-State Electronics, vol. 47, no. 11, pp. 2027-2030, 2003.
    [9]S. C. Hung, Y. K. Su, S. J. Chang, S. C. Chen, L. W. Ji, T. H. Fang, L. W. Tu, and M. Chen, “Self-formation of GaN hollow nanocolumns by inductively coupled plasma etching,” Applied Physics a-Materials Science & Processing, vol. 80, no. 8, pp. 1607-1610, 2005.
    [10]S. C. Hung, Y. K. Su, S. J. Chang, L. W. Ji, D. S. Shen, and C. H. Huang, “InGaN/GaN MQD p-n junction photodiodes,” Physica E-Low-Dimensional Systems & Nanostructures, vol. 30, no. 1-2, pp. 13-16, 2005.
    [11]Y. K. Su, S. J. Chang, L. W. Ji, C. S. Chang, L. W. Wu, W. C. Lai, T. H. Fang, and K. T. Lam, “InGaN/GaN blue light-emitting diodes with self-assembled quantum dots,” Semiconductor Science and Technology, vol. 19, no. 3, pp. 389-392, 2004.
    [12]E. M. Bachari, G. Baud, S. Ben Amor, and M. Jacquet, “Structural and optical properties of sputtered ZnO films,” Thin Solid Films, vol. 348, no. 1-2, pp. 165-172, 1999.
    [13]K. Kobayashi, T. Matsubara, S. Matsushima, S. Shirakata, S. Isomura, and G. Okada, “Preparation of c-axis oriented ZnO films by low-pressure organometallic chemical vapor deposition,” Thin Solid Films, vol. 266, no. 2, pp. 106-109, 1995.
    [14]H. K. Ardakani, “Electrical conductivity of in situ 'hydrogen-reduced' and structural properties of zinc oxide thin films deposited in different ambients by pulsed excimer laser ablation,” Thin Solid Films, vol. 287, no. 1-2, pp. 280-283, 1996.
    [15]M. H. Aslan, A. Y. Oral, E. Mensur, A. Gul, and E. Basaran, “Preparation of c-axis-oriented zinc-oxide thin films and the study of their microstructure and optical properties,” Solar Energy Materials and Solar Cells, vol. 82, no. 4, pp. 543-552, 2004.
    [16]M. A. Lucio-Lopez, M. A. Luna-Arias, A. Maldonado, M. D. Olvera, and D. R. Acosta, “Preparation of conducting and transparent indium-doped ZnO thin films by chemical spray,” Solar Energy Materials and Solar Cells, vol. 90, no. 6, pp. 733-741, 2006.
    [17]T. Saeed, and P. Obrien, “Deposition and characterisation of ZnO thin films grown by chemical bath deposition,” Thin Solid Films, vol. 271, no. 1-2, pp. 35-38, 1995.
    [18]Y. F. Nicolau, “Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process,” Applications of Surface Science, vol. 22-3, no. May, pp. 1061-1074, 1985.
    Chapter 6-2:
    Reference
    [1]K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 2, pp. 321-332, 2002.
    [2]T. Gessmann, and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” Journal of Applied Physics, vol. 95, no. 5, pp. 2203-2216, 2004.
    [3]H. Sugawara, K. Itaya, and G. Hatakoshi, “Hybrid-Type InGaAlP/GaAs Distributed Bragg Reflectors for InGaAlP Light-Emitting Diodes,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 33, no. 11, pp. 6195-6198, 1994.
    [4]T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, and C. Karnutsch, “Omnidirectional reflective contacts for light-emitting diodes,” IEEE Electron Device Letters, vol. 24, no. 11, pp. 683-685, 2003.
    [5]T. Gessmann, and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” Journal of Applied Physics, vol. 95, no. 5, pp. 2203-2216, 2004.
    [6]R. Windisch, S. Meinlschmidt, C. Rooman, L. Zimmermann, B. Dutta, M. Kuijk, P. Kiesel, G. H. Dohler, G. Borghs, and P. Heremans, “Light extraction mechanisms in surface-textured light-emitting diodes,” Proceedings of the SPIE - The International Society for Optical Engineering, vol. 4278, pp. 90-8, 2001.
    [7]Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Optics Express, vol. 17, no. 23, pp. 20991-20997, 2009.
    [8]Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photonics Technology Letters, vol. 14, no. 8, pp. 1064-1066, 2002.
    [9]M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, no. 6B, pp. 4346-4349, 2002.
    [10]H. M. Lo, Y. T. Hsieh, S. C. Shei, Y. C. Lee, X. F. Zeng, W. Y. Weng, N. M. Lin, and S. J. Chang, “AlGaInP LEDs Prepared by Contact-Transferred and Mask-Embedded Lithography,” IEEE Journal of Quantum Electronics, vol. 46, no. 12, pp. 1834-1839, 2010.
    [11]X. F. Zeng, S. C. Shei, and S. J. Chang, “Improving Light Output Power of AlInGaP-Based LEDs Using GaP Nanorods Prepared by SILAR Method,” ECS Solid State Letters, vol. 2, no. 11, pp. Q79-Q81, 2013.
    [12]S. C. Shei, S. J. Chang, and P. Y. Lee, “Rinsing Effects on Successive Ionic Layer Adsorption and Reaction Method for Deposition of ZnO Thin Films,” Journal of the Electrochemical Society, vol. 158, no. 3, pp. H208-H213, 2011.
    [13]A. W. Omta, M. F. Kropman, S. Woutersen, and H. J. Bakker, “Negligible effect of ions on the hydrogen-bond structure in liquid water,” Science, vol. 301, no. 5631, pp. 347-349, 2003.
    [14]A. G. Rozhkova, E. V. Butyrskaya, M. V. Rozhkova, and V. A. Shaposhnik, “Quantum chemical calculation of cation interaction with water molecules and ethylene glycol,” Journal of Structural Chemistry, vol. 48, no. 1, pp. 166-169, 2007.
    [15]J. Zhang, P. Zhang, K. Ma, F. Han, G. Chen, and X. Wei, “Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study,” Science in China Series B-Chemistry, vol. 51, no. 5, pp. 420-426, 2008.
    [16]S. C. Shei, and M. H. Chu, “SiNx Nanopillars on GaN-Based LED to Enhance Light-Extraction Efficiency by a Successive Ionic Layer Adsorption and Reaction Method,” Journal of Lightwave Technology, vol. 31, no. 14, pp. 2413-2418, 2013.
    [17]K. H. Dai, L. S. Wang, D. X. Huang, C. B. Soh, and S. J. Chua, “Influence of Size of ZnO Nanorods on Light Extraction Enhancement of GaN-Based Light-Emitting Diodes,” Chinese Physics Letters, vol. 28, no. 9,pp.098501 , 2011.
    [18]K. Dai, C. B. Soh, S. J. Chua, L. Wang, and D. Huang, “Influence of the alignment of ZnO nanorod arrays on light extraction enhancement of GaN-based light-emitting diodes,” Journal of Applied Physics, vol. 109, no. 8, 083110-1 – 6, 2011.
    [19]K. H. Peter, D. Stephen, R. H. Friend Thomas, and N. Tessler, “All-polymer optoelectronic devices,” Science, vol. 285, no. 5425, pp. 233-236, 1999.
    [20]R. H. Horng, T. M. Wu, and D. S. Wuu, “Improved light extraction in AlGaInP-based LEDs using a roughened window layer,” Journal of the Electrochemical Society, vol. 155, no. 10, pp. H710-H715, 2008.

    無法下載圖示 校內:2019-08-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE