| 研究生: |
許國忠 Hsu, Kuo-Chung |
|---|---|
| 論文名稱: |
超薄無種晶銅擴散阻障層應用於先進銅製程之研究 Study of Ultra-thin Seedless Cu Diffusion Barrier in Advanced Cu Metallization |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 銅製程 、銅擴散阻障層 、無種晶銅擴散阻障層 、自我成長阻障層 、多孔隙超低介電質材料 、釕阻障層 、磷掺雜 |
| 外文關鍵詞: | Cu Metallization, Cu Diffusion Barrier, Seedless Cu Diffusion Barrier, Self-Forming Barrier, Ru Alloy, Ru(P) alloy, Porous low-k dielectric |
| 相關次數: | 點閱:126 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究可直接電鍍銅之材料做為無種晶銅擴散阻障層(Seedless Cu diffusion barriers)之研究與探討。其分為二種研究方法,第一方法為改善可電鍍銅材料之釕阻障層,釕金屬已被證實可以不需銅種晶層直接電鍍銅,然而釕金屬薄膜為柱狀結構(Columnar microstructure),提供許多垂直晶粒邊界(Grain boundaries),會使銅原子大量、快速地擴散至介電層中,導致元件可靠度下降。
在此研究方法下,又細分為兩個改善方式,第一種方式為探討不同之磷摻雜至釕薄膜中,其對釕金屬之微結構(Microstructure)變化與銅擴散阻障特性改善探討,磷摻雜釕金屬是利用濺鍍釕金屬薄膜的同時,混合通入磷化氫(PH3)之氣體來摻磷原子至釕薄膜中。研究結果發現,磷摻雜可以讓釕金屬結構趨向為類非晶(amorphous-like)的結構,使其晶粒邊界大量下降,進而抑制銅的擴散。研究亦發現在高含量磷摻雜的釕金屬,可以提高釕金屬再結晶的溫度至400˚C,此方式也大大提升釕阻障層之熱穩定度達800˚C。
第二種方式為利不同含量之鉻摻雜至釕使其合金化,探討其銅阻障特性與薄膜之微結構變化,本研究是用利共濺鍍之方式來沈積釕鉻合金。鉻為耐火金屬(Refractory metal),對銅會有相較低的擴散係數,本研究發現,在一定比例的鉻摻雜情況下,利用電子穿透顯微鏡與X光繞射分析都發現釕鉻合金薄膜具有非晶化的結構。鉻摻雜至釕中也提高了其再結晶之溫度達到700˚C,鉻摻雜至釕薄膜提供一個不錯的銅阻障效果,提高釕薄膜之熱穩定度達200˚C。
另一種研究方法為利用銅銦合金來做為銅種晶層,由於銦相較於銅與矽材料有較高的親氧特性,因此銅銦合金在製程退火中,銦會在銅銦合金層與介電材料層中,自我生成(self-forming)出一層緻密的氧化銦層,經由電子穿透顯微鏡之分析,其不論是在400oC或是500˚C的長時間退火,生成厚度都僅僅只有3nm。此一超薄氧化銦阻障層提供了一個絕佳的阻障特性,就算經過500˚C長達5小時的退火,利用X光光電子能譜儀(X-ray photoelectron spectroscopy,XPS)緃深分析觀察,發現還是可以有效的阻擋住銅的擴散。於多孔隙超低介電質材料上,經過高溫長時間退火,漏電流也沒有明顯的惡化,證明其確實有潛力可以先進銅製程上。
全球半導體技術藍圖(International Technology Roadmap for Semiconductors, ITRS)提出於2012年時,銅導線之阻障層厚度需低於2.6nm,本研究中,銅銦合金自我生成超薄阻障層的方法,其生成阻障層厚度僅只有3nm左右,是最為符合符合下一世代先進製程之銅阻障層厚度,再加上其優異的銅阻障特性,銅銦合金達到自我生成阻障層的方法,或許可以應用於下一世代的製程當中。不論如何,無種晶銅擴散阻障層提供了一種不須額外沉積傳統阻障層或是銅種晶層的方式,可以節省製程的步驟,達到製程步驟精減,已為目前積體電路工業界,下一世代主要研究之重點。
In this thesis, I used two approaches to investigate the performance of seedless Cu diffusion barriers. The first approach is self-forming In oxide as Cu diffusion barrier, the second one is adding impurities, such as P and Cr, into Ru barrier to improve barrier properties.
In the study of copper diffusion barrier properties of a 3 nm self-forming InOx layer on a porous ultra low-k (p-ULK), a 5 at.% In doped Cu film was directly deposited onto porous low-k films by co-sputtering, followed by annealing at various temperatures. Transmission electron microscopy (TEM) images showed that a 3 nm layer was self-formed at the interface between Cu-In and p-ULK films after annealing at 400˚C for 1 h. An EDS line scan on the region near this interface showed obvious accumulation of In at the interface. X-ray photoelectron spectroscopy (XPS) analyses indicated that the self-formed interfacial layer was InOx. The self-forming InOx layer also prevented Cu agglomeration on the p-ULK film surface. The XPS atomic depth profiles showed that the self-formed InOx barrier was thermally stable against Cu diffusion to at least 500˚C for 5 h. The sheet resistance of the post 500 oC annealed Cu-In film was comparable to that of a pure Cu film. The Cu-In self-forming barrier approach may be a viable candidate for Cu/p-ULK interconnects.
The thermal and electrical properties of physical vapor deposition (PVD) Ru(P) film deposited on p-ULK material as Cu diffusion barrier were also studied. The phosphorous concentration can be tuned by adjusting Ar to PH3 ratio of the sputtering gases. The leakage current depends on phosphorous concentration. Higher phosphorous content in Ru film has lower leakage current. No obvious phosphorous content dependence was observed when the amorphous Ru(P) film crystallized. The X-ray diffraction (XRD) graphs and energy dispersive spectrometer’s (EDS) atomic depth profiles show that the Ru(P) film deposited on p-ULK can effectively block Cu diffusion when the sample is subjected to 800˚C 5 min annealing. The phosphorous doped Ru film improves diffusion barrier properties and leakage current performance. The improved Ru(P) barrier is also capable of direct Cu plating and could be a potential candidate for advanced metallization.
In addition, a 5 nm-thick Cr added Ru film has been extensively investigated as a seedless Cu diffusion barrier. The 7.8 at.% Cr added Ru film has a glassy microstructure and is an amorphous-like film. The RuCr film is stable up to 750˚C, which is approximately a 200˚C improvement in thermal stability as compared to that of the pure Ru film. The leakage current of the Cu/5 nm RuCr/p-ULK/Si stacked structure is at least two orders of magnitude lower than that of a pristine Ru sample. The RuCr film can be a promising Cu diffusion barrier for advanced Cu metallization.
Chapter 1
[1]T. Gupta, Copper Interconnect Technology, New York: Springer, 2009.
[2] B. P. Wong, A. Mittal, Y. Cao, and G. Starr, Nano-CMOS Crcuit and Physical Design, New Jersey: John Wiley & Sons, Inc., 2005.
[3] Y. Shacham-Diamand , T. Osaka, M. Datta, and T. Ohba, Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications, London: Springer, 2009.
[4] G.E. Moore “Cramming More Components Onto Integrated Circuits”, Proceedings of the IEEE, vol. 86, no. 1, pp. 82-85, Jan 1998.
[5] M.T. Bohr, “Interconnect scaling-the real limiter to high performance ULSI”, in proc. IEEE International Electron Devices Meeting, 1995, pp. 241-244.
[6] R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper Metallization for High Performance Silicon Technology”, Annu. Rev. Mater. Sci., vol. 30, pp. 229-262, 2000.
[7] D.C. Edelstein, G.A. Sai-Halasz and Y.J. Mii, “VLSI On-Chip Interconnection Performance Simulations and Measurements”, IBM J. Res. Dev. Develop., vol. 39, pp. 383-401, July 1995.
[8] E. Zachech, C. Whelan and T. Mikolajick, “Engineering Materials and Processes”, Germany: Springer, 2005.
[9] M. Engelhardt, G. Schindler, K. Mosig, G. Steinlesberger, W. Steinhögl, and G. Gebara, “Extending copper metallization technology for wiring to end-of-roadmap feature sizes”, in proc. Advanced Metallization Conference, 2001, pp. 11-17.
[10] K. Fuchs, “The conductivity of thin metallic films according to the electron theory of metals”, Proc. Cambridge Philos. Soc., vol. 34, no. 1936, pp. 100-108, 1938.
[11] E.H. Sondheimer, “The mean free path of electrons in metals”, Adv. Phys., vol. 1, no. 1, pp. 1-42, Jan. 1952.
[12] A.F. Mayadas and M. Shatzkes, “Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces”, Phys. Rev. B, vol. 1, no. 4, pp. 1382-1389, Feb. 1970.
[13] G. Schindler, W. Steinhögl, G. Steinlesberger, M. Traving, and M. Engelhardt, “Microstructure of Cu damascene nano-interconnects”, in proc. Advanced Metallization Conference, 2002, p. 391.
[14] G. Steinlesberger, A. von Glasow, M. Engelhardt, G. Schindler, W. Honlein, M. Holz, and E. Bertagnolli, “Copper damascene interconnects for the 65 nm technology node: a first look at the reliability properties”, in proc. IEEE International Interconnect Technology Conference, 2002, pp.265-267.
[15] G. Schindler, W. Steinhogl, G. Steinlesberger, M. Traving, and M. Engelhardt, "Scaling of parasitics and delay times in the backend-of-line", Microelectron. Eng., vol. 70, no. 1, pp. 7-12, Oct. 2003.
[16] M. Baklanov, K. Maex and M. Green, Dielectric films for advanced microelectronics. Chichester, West Sussex, England: John Wiley & Sons, 2007.
[17] S. P. Murarka, I. V. Verner and R. J. Gutmann, Copper-fundamental mechanisms for microelectronic applications, New York: John Wiley & Sons, 2000.
[18] K. Wetzig and C. M. Schneider, Metal based thin films for electronics, 2nd ed., Weinheim: Wiley-VCH, 2006.
[19] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, "Full copper wiring in a sub-0.25 μm CMOS ULSI technology", in proc. IEEE International Electron Devices Meeting, 1997, pp. 773-776.
[20] C. J. Smithells and E. A. Brandes, "Metals reference book", 5th ed., London; Boston: Butterworths, 1976.
[21] S. P. Murarka, "Low dielectric constant materials for interlayer dielectric applications", Solid State Technol., vol. 39, no.3, pp. 83-90, Mar. 1996.
[22] R. Chan, T.N. Arunagiri, Y. Zhang, O. Chyan, R.M. Wallace, M.J. Kim, and T.Q. Hurd, “Diffusion studies of copper on ruthenium thin film a plateable copper diffusion barrier”, Electrochem. Solid State Lett., vol. 7, no. 8, pp.G154-G157, May 2004.
[23] T.N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, and L.C. Chen, ”5 nm ruthenium thin film as a directly plateable copper diffusion barrier”, Appl. Phys. Lett., vol. 86, no. 8, p. 083104, Feb. 2005.
[24] M. Damayanti, T. Sritharan, Z. H. Gan, S. G. Mhaisalkar, N. Jiang, and L. Chan, "Ruthenium barrier/seed layer for Cu/low-k metallization: crystallographic texture, roughness, diffusion, and adhesion", J. Electrochem. Soc., vol. 153, no. 6, pp. J41-J45, Apr. 2006.
Chapter 2
[1] H. Mehrer. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. New York, Berlin: Springer, 2007.
[2] P.G. Shewmon. Diffusion in solids, 2nd ed. Warrendale, Pa.: Minerals, Metals & Materials Society, 1989.
[3] A. Suzuki and Y. Mishin, “Atomistic Modeling of Point Defects and Diffusion in Copper Grain Boundaries”, Interface Science, vol. 11, no.1, pp. 131-148, Jan. 2003.
[4] R. Smoluchowski, “Theory of grain boundary diffusion”, Phys. Rev., vol. 87, no. 3, pp. 482-487, Aug. 1952.
[5] L.C. Luther, "Diffusion Along Dislocations", J. Chem. Phys., vol. 43, no. 7, pp. 2213-2218, Oct. 1965.
[6] R.T.P. Whipple, "Concentration contours in grain boundary diffusion", Philosophical Magazine Series 7, vol. 45, no. 371, pp. 1225-1236, 1954.
[7] T. Suzuoka, "Exact Solutions of Two Ideal Cases in Grain Boundary Diffusion Problem and the Application to Sectioning Method", J. Phys. Soc. Jpn., vol. 19, no. 6, pp. 839-851, Jun. 1964.
[8] A.D. Le Claire and A. Rabinovitch, "A mathematical analysis of diffusion in dislocations. I. Application to concentration 'tails'", J. Phys. C: Solid State Phys., vol. 14, no. 27, pp. 3863-3879, Sep. 1981.
[9] A.D. Le Claire and A. Rabinovitch, "A mathematical analysis of diffusion in dislocations. II. Influence at low densities on measured diffusion coefficients", J. Phys. C: Solid State Phys., vol. 15, no. 16, pp. 3455-3471, Jun. 1982.
[10] A.D. Le Claire and A. Rabinovitch, "A mathematical analysis of diffusion in dislocations. III. Diffusion in a dislocation array with diffusion zone overlap", J. Phys. C: Solid State Phys., vol. 16, no. 11, pp. 2087-2104, Apr. 1983.
[11] A.E. Kaloyeros and E. Eisenbraun, “Ultrathin diffusion barriers/liners for gigascale copper metallization”, Annu. Rev. Mater. Sci., vol. 30, pp. 363-385, Aug. 2000.
[12] K. Wetzig and C.M. Schneider. Metal based thin films for electronics. Weinheim: Wiley-VCH, 2003.
[13] H.Y. Wong, N.F.M. Shukor, and N. Amin, “Prospective development in diffusion barrier layers for copper metallization in LSI”, Microelectron. J., vol. 38, no. 6-7, pp. 777-782, Jun. 2007.
[14] S.P. Murarka, "Multilevel interconnections for ULSI and GSI era", Mater. Sci. Eng. R-Rep., vol. 19, no.3, pp.87-151, May 1997.
[15] P.J. Ding, W.A. Lanford, S. Hymes, and S.P. Murarka, "Oxidation resistant high conductivity copper films", Appl. Phys. Lett., vol. 64, no. 21, pp.2897-2899, May 1994.
[16] C.J. Smithells and E.A. Brandes. Metals reference book, 5th ed. London; Boston: Butterworths, 1976.
[17] L.S. Darken and R.W. Gurry. Physical chemistry of metals. New York: McGraw-Hill, 1953.
[18] J. Koike and M. Wada, "Self-forming diffusion barrier layer in Cu-Mn alloy metallization", Appl. Phys. Lett., vol. 87, no. 4, p. 041911, Jul. 2005.
[19] J. Koike, M. Haneda, J. Iijima, and M. Wada, "Cu Alloy Metallization for Self-Forming Barrier Process", in proc. IEEE International Interconnect Technology Conference, 2006, pp. 161-163.
[20] M.J. Frederick, R. Goswami, and G. Ramanath, "Sequence of Mg segregation, grain growth, and interfacial MgO formation in Cu-Mg alloy films on SiO2 during vacuum annealing", J. Appl. Phys., vol. 93, no. 10, pp. 5966-5972, May 2003.
[21] J. Koike, M. Haneda, J. Iijima, Y. Otsuka, H. Sako, and K. Neishi, "Growth kinetics and thermal stability of a self-formed barrier layer at Cu-Mn/SiO2 interface", J. Appl. Phys., vol. 102, no. 4, p.043527, Aug. 2007.
[22] T. Watanabe, H. Nasu, T. Usui, G. Minamihaba, N. Kurashima, A. Gawase, M. Shimada, Y. Yoshimizu, Y. Uozumi, and H. Shibata, "Self-Formed Barrier Technology using CuMn Alloy Seed for Copper Dual-Damascene Interconnect with porous-SiOC/ porous-PAr Hybrid Dielectric", in proc. IEEE International Interconnect Technology Conference, 2007, pp. 7-9.
[23] Y. Ohoka, Y. Ohba, A. Isobayashi, T. Hayashi, N. Komai, S. Arakawa, R. Kanamura, and S. Kadomura, "Integration of High Performance and Low Cost Cu/Ultra Low-k SiOC(k=2.0) Interconnects with Self-formed Barrier Technology for 32nm-node and Beyond", in proc. IEEE International Interconnect Technology Conference, 2007, pp. 67-69.
[24] C.J. Liu and J.S. Chen, "Low leakage current Cu(Ti)/SiO2 interconnection scheme with a self-formed TiOx diffusion barrier", Appl. Phys. Lett., vol. 80, no. 15, pp. 2678-2680, Apr. 2002.
[25] J. Iijima, Y. Fujii, K. Neishi, and J. Koike, "Resistivity reduction by external oxidation of Cu-Mn alloy films for semiconductor interconnect application", J. Vac. Sci. Technol. B, vol. 27, no. 4, pp. 1963-1968, Jul. 2009.
[26] T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami, ” Diffusion barrier property of TaN between Si and Cu”, Appl. Surf. Sci., vol. 99, no. 4, pp. 265-272, Aug. 1996.
[27] Q. Xie, X. P. Qu, J. J. Tan, Y.L. Jiang, M. Zhou, T. Chen and G. P. Ru, “Superior thermal stability of Ta/TaN bi-layer structure for copper metallization”, Appl. Surf. Sci., vol. 253, no. 3, pp. 1666-1672, Nov. 2006.
[28] M.H. Tsai, S.C. Sun, C.E. Tsai, S.H. Chuang, and H.T. Chiu, ”Comparison of the diffusion barrier properties of chemical‐vapor‐deposited TaN and sputtered TaN between Cu and Si”, J. Appl. Phys., vol. 79, no. 9, pp. 6932-6938, May 1996.
[29] H. Okamoto, ”Cu-Ru (copper-ruthenium)”, J. Phase Equilib., vol. 13, no. 4, p. 440, Aug. 1992.
[30] O. Chyan, T.N. Arunagiri and T. Ponnuswamy, “Electrodeposition of copper thin film on ruthenium”, J. Electrochem. Soc., vol. 150, no. 5, pp. C347-C350, Mar. 2003.
[31] K.M. Takahashi, "Electroplating copper onto resistive barrier films", J. Electrochem. Soc., vol. 147, no. 4, pp. 1414-1417, Apr. 2000.
[32] M.W. Lane, C.E. Murray, F.R. McFeely, P.M. Vereecken, and R. Rosenburg, ”Liner materials for direct electrodeposition of Cu”, Appl. Phys. Lett., vol. 83, no. 12, pp. 2330-2332, Sep. 2003.
[33] M. Damayanti, T. Sritharan, S.G. Mhaisalkar, and Z.H. Gan, “Effects of dissolved nitrogen in improving barrier properties of ruthenium”, Appl. Phys. Lett., vol. 88, no. 4, p. 044101, Jan. 2006.
[34] S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, “Plasma-enhanced atomic layer deposition of Ru–TiN thin films for copper diffusion barrier metals”, J. Electrochem. Soc., vol. 153, no. 6, pp. G578-G581, Apr. 2006.
[35] X.P. Qu, J.J. Tan, M. Zhou, T. Chen, Q. Xie, G.P. Ru, and B.Z. Li, “Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization” Appl. Phys. Lett., vol. 88, no. 15, p.151912, Apr. 2006.
[36] S.H. Kim, H.T. Kim, S.S. Yim, D.J. Lee, K.S. Kim, H.M. Kim, K.B. Kim, H. Sohn, “A bilayer diffusion barrier of ALD-Ru/ALD-TaCN for direct plating of Cu”, J. Electrochem. Soc., vol. 155, no. 8, pp.H589-H594, Jun. 2008.
[37] S.W. Kim, S.H. Kwon, S.J. Jeong, and S.W. Kang, “Improvement of copper diffusion barrier properties of tantalum nitride films by incorporating ruthenium using PEALD”, J. Electrochem. Soc., vol. 155, no. 11, pp. H885-H888, Sep. 2008.
[38] C.W. Chen, J.S. Chen and J.S. Jeng, “Characteristics of thermally robust 5 nm Ru–C diffusion barrier/Cu seed layer in Cu metallization”, J. Electrochem. Soc., vol. 156, no. 9, pp. H724-H728, Jul. 2009.
[39] D.C. Perng, J.B. Yeh and K.C. Hsu, “Ru/WCoCN as a seedless Cu barrier system for advanced Cu metallization”, Appl. Surf. Sci., vol. 256, no. 3, pp. 688-692, Nov. 2009.
[40] D. Greenslit, T. Chakraborty and E. Eisenbraun, “Development of plasma-enhanced atomic layer deposition grown Ru–WCN mixed phase films for nanoscale diffusion barrier and copper direct-plate applications”, J. Vac. Sci. Technol. B, vol. 27, no. 2, pp. 631-636,Mar. /Apr. 2009.
[41] Q. Xie, Y.L. Jiang, J. Musschoot, D. Deduytsche, C. Detavernier, R.L.V. Meirhaeghe, S.V. Berghe, G.P. Ru, B.Z. Li, and X.P. Qu, “Ru thin film grown on TaN by plasma enhanced atomic layer deposition”, Thin Solid Films, vol. 517, no. 16, pp. 4689-4693, Jun. 2009.
[42] D.C. Perng, K.C. Hsu, S.W. Tsai and J.B. Yeh, “Thermal and electrical properties of PVD Ru (P) film as Cu diffusion barrier”, Microelectron. Eng., vol. 87, no. 3, pp. 365-369, Mar. 2010.
[43] D.C. Perng, J.B. Yeh, K.C. Hsu, and Y.C. Wang, “5 nm amorphous boron and carbon added Ru film as a highly reliable Cu diffusion barrier”, Electrochem. Solid-State Lett., vol. 13, no. 8, pp. H290-H293, Jun. 2010.
[44] J.B. Yeh, D.C. Perng and K.C. Hsu, “Amorphous RuW film as a diffusion barrier for advanced Cu metallization” J. Electrochem. Soc., vol. 157, no. 8, pp. H810-H814, Jun. 2010.
[45] J.S. Fang, J.H. Lin, B.Y. Chen, and T.S. Chin, “Ultrathin Ru–Ta–C barriers for Cu metallization”, J. Electrochem. Soc., vol. 158, no. 2, pp. H97-H102, Dec. 2011.
[46] C.C. Chang and F.M. Pan, “In situ two-step plasma enhanced atomic layer deposition of Ru/RuNx barriers for seedless copper electroplating”, J. Electrochem. Soc., vol. 158, no. 4, pp. G97-G102, Mar. 2011.
[47] S.Y. Chang, C.Y. Wang, C.E. Li, Y.C. Huang, “5 nm-thick (AlCrTaTiZrRu)N0.5 multi-component barrier layer with high diffusion resistance for Cu Interconnects”, Nanosci. Nanotechno. Lett., vol. 3, no. 2, pp.289-293, Apr. 2011.
[48] C.X. Yang, S.J. Ding, W. Zhang, P.F. Wang, X.P. Qu, “Improvement of diffusion barrier performance of Ru thin film by incorporating a WHfN underlayer for Cu metallization”, Electrochem. Solid State Lett., vol. 14, no. 2, pp. H84-H87, Dec. 2011.
Chapter 3
[1] M. Ohring, “Materials Science of Thin Films”, 2nd ed., Academic Press, N.J. USA, (2002).
[2] S. Franssila, “Introduction to Microfabrication”, Wiley-VCH, Finland, (2004).
[3] H. Bubert and H. Jenett, "Surface and thin film analysis: a compendium of principles, instrumentation, applications". Wiley-VCH, Weinheim, (2002).
[4] M. Birkholz, P. F. Fewster, and C. Genzel, "Thin film analysis by X-ray scattering". Wiley-VCH, Weinheim, (2006).
[5] O.C. Wells, "Scanning electron microscopy". McGraw-Hill, New York, (1974).
[6] J.I. Goldstein, C.E. Lyman, D.E. Newbury, E. Lifshin, P. Echlin, L. Sawyer, D.C. Joy, and J. R. Michael, “Scanning Electron microscopy and X-ray microanalysis”, 3th ed., Kluwer Academic, New York, (2003).
[5] K. Wetzig and C.M. Schneider, "Metal based thin films for electronics", 2nd ed., Wiley-VCH, Weinheim, (2006).
[6] J.F. Watts and J. Wolstenholme, "An introduction to surface analysis by XPS and AES". John Wiley & Sons, Chichester, West Sussex ; New York, NY, (2003).
[7] K. Wetzig and C. M. Schneider, "Metal based thin films for electronics", 2nd ed.,
Wiley-VCH, Weinheim, (2006).
[8] H. Bubert and H. Jenett, “Surface and Thin Film Analysis”, Wiley-VCH, Weinheim, (2002).
Chapter 4
[1] R. H. Havemann and J. A. Hutchby,” High-performance interconnects: an integration overview”, Proc. IEEE, vol. 89, no. 5, pp. 586-601, May 2001.
[2] E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela, and M.-A. Nicolet,” Tantalum‐based diffusion barriers in Si/Cu VLSI metallizations”, J. Appl. Phys., vol. 70, pp. 1369 - 1373, Aug. 1991.
[3] T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami,” Diffusion barrier property of TaN between Si and Cu”, Appl. Surf. Sci., vol. 99, pp. 265-272, Aug. 1996.
[4] M. Lane, R. H. Dauskardt, N. Krishna, and I. Hashim,” Adhesion and reliability of copper interconnects with Ta and TaN barrier layers”, J. Mater. Res., vol. 15, no. 1, pp.203-211, Jan. 2000.
[5] Y. Travaly, B. Mandeep , L. Carbonell, Z. Tökei, J.V. Olmen, F. Iacopi, M.V. Hove, M. Stucchi, and K. Maex, “On a more accurate assessment of scaled copper/low-k interconnects performance”, IEEE Trans. Semicond. Manuf., vol. 20, no.3, pp.333-340, Aug. 2007.
[6] K. Barmak, C. Cabral, Jr., K. P. Rodbell, and J. M. E. Marper, ”On the use of alloying elements for Cu interconnect applications”, J. Vac. Sci. Technol. B, vol. 24, pp. 2485-2498, Nov. 2006.
[7] C. P. Wang, S. Lopatin, A. Marathe, M. Buynoski, R. Huang, and D. Erb, ” Binary Cu-alloy layers for Cu-interconnections reliability improvement”, in proc. IEEE International Interconnect Technology Conference, 2001, pp. 86-88.
[8] P. J. Ding, W. A. Lanford, S. Hymes, and S. P. Murarka, ”Effects of the addition of small amounts of Al to copper: Corrosion, resistivity, adhesion, morphology, and diffusion”, J. Appl. Phys., vol. 75, pp. 3627-3631, Apr. 1994.
[9] P. J. Ding, W. A. Lanford, S. Hymes, and S. P. Murarka, ”Oxidation resistant high conductivity copper films”, Appl. Phys. Lett., vol. 64, pp. 2897-2899, May 1994.
[10] S. Tsukimoto, T. Morita, M. Moriyama, K. Ito, and M. Murakami, ”Formation of Ti diffusion barrier layers in Thin Cu(Ti) alloy films”, J. Electron. Mater., vol. 34, no. 5, pp. 592-599, May 2005.
[11] J. Koike and M. Wada, “Self-forming diffusion barrier layer in Cu–Mn alloy metallization”, Appl. Phys. Lett., vol. 87, p. 041911, Jul. 2005.
[12] J. Koike, M. Haneda, J. Iijima, and M. Wada, “Cu Alloy Metallization for Self-Forming Barrier Process”, in proc. IEEE International Interconnect Technology Conference, 2006, pp. 161-164.
[13] J. Koike, M. Haneda, J. Iijima, Y. Otsuka, H. Sako, and K. Neishi,” Growth kinetics and thermal stability of a self-formed barrier layer at Cu-Mn/SiO2 interface”, J. Appl. Phys., vol. 102, p.043527, Jul. 2007.
[14] T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kcprzak, Binary Alloy Phase Diagrams, 2nd ed. Materials Park: ASM International, 1990.
[15] J.S. Fang and H.Y. Hsieh, ”Structural and passivative behaviors of Cu(In) thin film”, J. Electron. Mater., vol. 36, no. 2, pp. 129-135, Feb. 2007.
[16] C.S. Hsu, H.Y. Hsieh, and J.S. Fang, ” Enhancement of oxidation resistance and electrical properties of indium-doped copper thin films”, J. Electron. Mater., vol. 37, no. 6, pp. 852-859, Jun. 2008.
[17] B.D. Cullity, Elements of X-ray Diffraction, 2nd ed., Reading: Addison-Wesley, 1978.
[18] W.F. Gale and T.G. Totemeier, Smithells Metals Reference Book, 8th ed. Oxford, U.K.: Butterworth-Heinemann, 2004.
[19] M. S. Lee, W. C. Choi, E. K. Kim, C. K. Kim, and S. K. Min, ” Characterization of the oxidized indium thin films with thermal oxidation”, Thin Solid Films, vol. 279, pp. 1-3, Jun. 1996.
Chapter 5
[1] International Technology Roadmap for Semiconductors, 2007.
[2] M. Fayolle, G. Passemard, O. Louveau, F. Fusalba, and J. Cluzel, “Crosslinking impact of mesoporous MSQ films used in microelectronic interconnections on mechanical properties” Microelectron. Eng., vol. 70, no. 1-2, pp. 255-266, Jan. 2003.
[3] J.N. Sun, Y. Hu, W.E. Frieze, W. Chen, and D.W. Gidley, ”How Pore Size and Surface Roughness Affect Diffusion Barrier Continuity on Porous Low-k Films”, J. Electrochem. Soc., vol. 150, no. 5, pp. F97-F101, May 2003.
[4] P. Yang, D. Lu, R. Kumar, and H.O. Moser, ”Influence of plasma treatment on low-k dielectric films in semiconductor manufacturing”, Nucl. Instrum. Meth. Phys. Res. B, vol. 238, no. 1-4, pp.310-313, Aug. 2005.
[5] K. Maex, M.R. Baklanov, D. Shamiryan, F. lacopi, S.H. Brongersma, and Z.S. Yanovitskaya, “Low dielectric constant materials for microelectronics”, J. Appl. Phys., vol. 93, no. 11, pp. 8793-9405, Jun. 2003.
[6] M.W. Lane, C.E. Murray, F.R. McFeely, P.M. Vereecken, and R. Rosenburg, ”Liner materials for direct electrodeposition of Cu”, Appl. Phys. Lett., vol. 83, no. 12, pp. 2330-2332, Sep. 2003.
[7] S.M. Choi, K.C. Park, B.S. Suh, I.R. Kim, H.K. Kang, K.P. Suh, H.S. Park, J.S. Ha, and D.K. Joo, ” Process integration of CVD Cu seed using ALD Ru glue layer for sub-65nm Cu interconnect”, in proc. IEEE VLSI Techchnology Symposium, 2004, pp. 64-65 .
[8] T.N. Arunagiri, Y. Zhang and O. Chyan, ”5 nm ruthenium thin film as a directly plateable copper diffusion barrier”, Appl. Phys. Lett., vol. 86, no. 8, p. 083104, Feb. 2005.
[9] C.C. Yang, T. Spooner, S. Ponoth, K. Chanda, A. Simon, C. Lavoie, M. Lane, C.K. Hu, E. Liniger, L. Gignac, T. Shaw, S. Cohen, F. McFeely ,and D. Edelstein, ”Physical, Electrical, and Reliability Characterization of Ru for Cu Interconnects”, in proc. IEEE International Interconnect Technology Conference, 2006, pp. 187-190.
[10] J. Lim, H. Park and C. Lee, ”Enhancement of Ru nucleation by pretreatments of the underlying TaSiN film surface in Ru MOCVD”, Thin Solid Films, vol. 475, no. 1-2, pp. 194-197, Mar. 2005.
[11] H. Kim, T. Koseki, T. Ohba, T. Ohta, Y. Kojima, H. Sato, and Y. Shimogaki, ”Cu wettability and diffusion barrier property of Ru thin film for Cu metallization”, J. Electrochem. Soc., vol. 152, no. 8, pp. G594-G600, Jun. 2005.
[12] R. Chan, T.N. Arunagiri, Y. Zhang, O. Chyan, R.M. Wallace, M.J. Kim, and T.Q. Hurd, “Diffusion studies of copper on ruthenium thin film”, Electrochem. Solid-State Lett., vol. 7, no. 8, pp. G154-G157, May 2004.
[13] J. Shin, H.W. Kim, G.S. Hwang, and J.G. Ekerdt, ”Chemical routes to ultra thin films for copper barriers and liners”, Surf. Coat. Technol., vol. 201, no. 22-23, pp. 9256-9259, Sep. 2007.
[14] D.C. Perng, J.B. Yeh and K.C. Hsu, ”Phosphorous doped Ru film for advanced Cu diffusion barriers”, Appl. Surf. Sci., vol. 254, no. 19, pp. 6059-6062, Jul. 2008.
[15] J. Shin, A. Waheed, W.A. Winkenwerder, H.W. Kim, K. Agapiou, R.A. Jones, G.S. Hwang, and J.G. Ekerdt, ”Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films”, Thin Solid Films, vol. 515, no. 13, pp. 5298-5307, May 2007.
[16] M.K. O’Neill, R. Vitris, J.L. Vincent, A.S. Lukas, and B.K. Peterson,” Optimized Materials Properties for Organosilicate Glasses Produced by Plasma-Enhanced Chemical Vapor Deposition”, Proc. Mat. Res. Soc. Symp., vol. 766, p.259, 2003.
[17] J.J. Tan, X.P. Qu, Q. Xie, Y. Zhou, and G.P. Ru, ”The properties of Ru on Ta-based barriers”, Thin Solid Films, vol. 504, no. 1-2, pp. 231-234, May 2006.
[18] J.S. Kwak, H.K. Baik, J.H. Kim, and S.M. Lee, “Suppression of silicide formation in Ta/Si system by ion-beam-assisted deposition”, Appl. Phys. Lett., vol. 71, no. 17, pp. 2451-2453, Oct. 1997.
[19] Y. Matsui, Y. Nakamura, Y. Shimamoto, and M. Hiratani, ”An oxidation barrier layer for metal-insulator-metal capacitors: Ruthenium silicide”, Thin Solid Films, vol. 437, no. 1, pp. 51-56, Aug. 2003.
[20] T.Y. Lin, H.Y. Cheng, T.S. Chin, C.F. Chiu, and J.S. Fang, ”5-nm-thick TaSiC amorphous films stable up to 750 °C as a diffusion barrier for copper metallization”, Appl. Phys. Lett., vol. 91, no. 15, p. 152908, Oct. 2007.
[21] P. Majumder, R. Katamreddy and C. Takoudis, “Atomic layer deposited ultrathin HfO2 and Al2O3 films as diffusion barriers in copper Interconnects”, Electrochem. Solid-State Lett., vol. 10, no. 10, pp.H291-H295, Jul. 2007.
[22] R.S. Brusa, M. Spagolla, G.P. Karwasz, A. Zecca, G. Ottaviani, F. Corni, M. Bacchetta, and E. Carollo, ”Porosity in low dielectric constant SiOCH films depth profiled by positron annihilation spectroscopy”, J. Appl. Phys., vol. 95, no. 5, pp. 2348-2354, Mar. 2004.
[23] J. Lin and C. Lee, “Grain boundary diffusion of copper in tantalum nitride thin films”, J. Electrochem. Soc., vol. 146, no. 9, pp. 3466-3471, Sep. 1999.
[24] S. Yu, T.K.S. Wang, X. Hu, and J. Wei, “A study on Cu diffusion to sol-gel derived low-k films”, Microelectron. Eng., vol. 77, no. 1, pp. 14-20, Jan. 2005.
Chapter 6
[1] Kajita, T. Usui, M. Yamada, E. Ogawa, T. Katata, A. Sakata, H. Miyajima, A. Kojima, R. Kanamura, Y. Ohoka, H. Kawashima, K. Tabuchi, K. Nagahata, Y. Kato, T. Hayashi, S. Kadomura and H. Shibata, “Highly reliable Cu/low-k dual-damascene interconnect technology with hybrid (PAE/SiOC) dielectrics for 65 nm-node high performance eDRAM”, in proc. IEEE International Interconnect Technology Conference, 2003, pp. 9-11.
[2] R. Rosenberg, D.C. Edelstein, C.-K. Hu, and K.P. Rodbell, “Copper metallization for high performance silicon technology”, Annu. Rev. Mater. Sci., vol. 30, pp. 229-262, Aug. 2000.
[3] C.S. Hau-Riege,” An introduction to Cu electromigration”, Microelectron. Reliab., vol. 44, no. 2, pp.195-205, Feb. 2004.
[4] V. Sukharev, A. Kteyan, E. Zschech and W.D. Nix, ”Microstructure Effect on EM-Induced Degradations in Dual Inlaid Copper Interconnects”, IEEE Trans. Device Mater. Reliab., vol. 9, no. 1, pp.87-97, Mar. 2009.
[5] C.A. Chang, “Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures”, J. Appl. Phys., vol. 67, no. 1, pp. 566-569, Jan. 1990.
[6] O.R. Rodriguez, W.N. Gill, J.L. Plawsky, T.Y. Tsui and S. Grunow, “Study of Cu diffusion in porous dielectrics using secondary-ion-mass spectrometry”, J. Appl. Phys., vol. 98, no.12, p.123514, Dec. 2005.
[7] C.C. Chang, S.K. JangJian and J.S. Chen, ”Dependence of Cu∕Ta–N∕Ta Metallization Stability on the Characteristics of Low Dielectric Constant Materials”, J. Electrochem. Soc., vol. 152, no. 7, pp. G517-G521, May 2005.
[8] Q. Xie, X. P. Qu, J. J. Tan, Y.L. Jiang, M. Zhou, T. Chen and G. P. Ru, “Superior thermal stability of Ta/TaN bi-layer structure for copper metallization”, Appl. Surf. Sci., vol. 253, no. 3, pp. 1666-1672, Nov. 2006.
[9] Z. H.Cao, K. Hu and X. K.Meng, “Diffusion barrier properties of amorphous and nanocrystalline Ta films for Cu interconnects”, J. Appl. Phys., vol. 106, no. 11, p.113513, Dec. 2009.
[10] P. R. Subramanlan and D. E. Laughlln, “The Cu-Ta (Copper-Tantalum) System”, Bull. Alloy Phase Diagr., vol. 10, no. 6, pp. 652-655, Dec. 1989.
[11] The International Technology Roadmap for Semiconductors, 2010 update
[12] R. Chan, T.N. Arunagiri, Y. Zhang, O. Chyan, R.M. Wallace, M.J. Kim, and T.Q. Hurd, “Diffusion studies of copper on ruthenium thin film a plateable copper diffusion barrier”, Electrochem. Solid State Lett., vol. 7, no. 8, pp.G154-G157, May 2004.
[13] H. Kim, T. Koseki, T. Ohba, T. Ohta, Y. Kojima, H. Sato and Y. Shimogaki, “Cu wettability and diffusion barrier property of Ru thin film for Cu metallization”, J. Electrochem. Soc., vol. 152, no. 8, pp. G594-G600, Jun. 2005.
[14] O. Chyan, T.N. Arunagiri and T. Ponnuswamy, “Electrodeposition of copper thin film on ruthenium”, J. Electrochem. Soc., vol. 150, no. 5, pp. C347-C350, Mar. 2003.
[15] T.P. Moffat, M. Walker, P.J. Chen, J.E. Bonevich, W.F. Egelhoff, L. Richter, C. Witt, T. Aaltonen, M. Ritala, M. Leskelä, and D. Josell, “Electrodeposition of Cu on Ru barrier layers for damascene processing”, J. Electrochem. Soc., vol. 153, no. 1, pp. C37-C50, Dec. 2006.
[16] T.N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, and L.C. Chen, ”5 nm ruthenium thin film as a directly plateable copper diffusion barrier”, Appl. Phys. Lett., vol. 86, no. 8, p. 083104, Feb. 2005.
[17] C.-C. Yang, T. Spooner, S. Ponoth, K. Chanda, A. Simon, C. Lavoie, M. Lane, C.-K. Hu, E. Liniger, L. Gignac, T. Shaw, S. Cohen, F. McFeely, and D. Edelstein, “Physical, Electrical, and Reliability Characterization of Ru for Cu Interconnects”, in proc. IEEE International Interconnect Technology Conference, 2006, pp. 187-190.
[18] M. Damayanti, T. Sritharan, S.G. Mhaisalkar, H.J. Engelmann, E. Zschech, A.V. Vairagar, and L. Chan, “Microstructural Evolution of Annealed Ruthenium–Nitrogen Films”, Electrochem. Solid State Lett., vol. 10, no. 6, pp. P15-P17, Mar. 2007.
[19] D.C. Perng, J.B. Yeh and K.C. Hsu, “Phosphorous doped Ru film for advanced Cu diffusion barriers”, Appl. Surf. Sci., vol. 254, no. 19, pp. 6059-6062, Jul. 2008.
[20] C.W. Chen, J.S. Chen and J.S. Jeng, “Effectiveness of Ta Addition on the Performance of Ru Diffusion Barrier in Cu Metallization”, J. Electrochem. Soc., vol. 155, no. 12, pp. H1003-H1008, Oct. 2008.
[21] M. Venkatraman and J.P. Neumann, “The Cr−Ru (chromium-ruthenium) system”,
Bull. Alloy Phase Diagr., vol. 8, no. 2, pp.109-112, Apr. 1987.
[22] S.W. Russell, S.A. Rafalski, R.L. Spreitzer, J. Li, M. Moinpour, F. Moghadam, and T.L. Alford, “Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions”, Thin Solid Films, vol. 262, no. 1-2, pp. 154-167, Jun. 1995.
[23] C.M. Liu, W.L. Liu, W.J. Chen, S.H. Hsieh, T.K. Tsai and L.C. Yang, ” ITO as a diffusion barrier between Si and Cu”, J. Electrochem. Soc., vol. 152, no.3, pp. G234-G239, Feb. 2005.
[24] Y. Wang, F. Cao, Z. Song and C.H. Zhaoa, “Application of Zr-Si Film as Diffusion Barrier in Cu Metallization”, Electrochem. Solid State Lett., vol. 10, no. 10, pp. H299-H301, Jul. 2007.
[25] N.-J. Park, D.P. Field, M.M. Nowell, and P.R. Besser, “Effect of film thickness on the evolution of annealing texture in sputtered copper films”, J. Electron. Mater., vol. 34, no. 12, pp. 1500-1508, Dec. 2005.
[26] S.-H. Kim, K.T. Nam, A. Datta, H.-M. Kim, K.-B. Kim, and D.-H. Kang, “Multilayer diffusion barrier for copper metallization using a thin interlayer metal (M = Ru, Cr, and Zr) between two TiN films”, J. Vac. Sci. Technol. B, vol. 21, no. 2, pp. 804-813, Mar. 2003.
[27] M. Damayanti, T. Sritharan, S. G. Mhaisalkar, E. Phoon and L. Chan, “Study of Ru barrier failure in the Cu/Ru/Si system”, J. Mater. Res., vol. 22, no. 9, pp. 2505-2511, Sep. 2007.
[28] J.W. Cahn, “The impurity-drag effect in grain boundary motion”, Acta Metallurgica, vol. 10, no. 9, pp. 789-798, Sep. 1962.
[29] T. Fukuda, H. Nishino and H. Yanazawa, “Analysis of leakage current of low-k materials for use as interlayer dielectric”, Jpn. J. Appl. Phys., vol. 43, no. 1, pp. 86-90, Jan. 2004.