簡易檢索 / 詳目顯示

研究生: 陳博鈞
Chen, Po-Chun
論文名稱: 應用代理人模型模擬動態群眾配送服務
Agent-based simulation of dynamic crowdsourced delivery service
指導教授: 沈宗緯
Shen, Chung-Wei
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 66
中文關鍵詞: 共享經濟群眾配送代理人模擬偶然配送員
外文關鍵詞: Sharing economy, Crowdsourced delivery, Agent-based simulation, Occasional drivers
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 群眾配送 (Crowdsourced Delivery) 為結合共享經濟與最後一哩配送的創新方案,透過募集群眾方式外包配送作業,以降低物流成本,提升配送彈性。以沃爾瑪 (Walmart) 的群眾配送為例,供應商除了以自有車隊配送訂單外,亦透過來店購物的顧客協助配送,以降低配送成本和等待時間。
    群眾配送中,線上訂單及到店顧客均具動態特性,集中式最佳化指派方法或傳統離散事件模擬對於動態且需考量不同個體特性之問題有其侷限。在實務上,群眾配送中的到店顧客具有個體決策行為,因此本研究採用代理人模擬 (Agent-based simulation),每位到店之顧客可設定不同接受度而決定是否配送及欲配送之訂單,而非統一由中心派遣,屬於分散式決策。
    本研究建立群眾配送代理人模型,並設計個別代理人之配送行為,包含訂單選擇基準、配送接受程度與訂單配送策略,研究結果發現相比於傳統物流服務模式,群眾配送服務能提供更低的配送成本與延遲率表現,對於整體服務績效提升顯著。未來,本研究之代理人模擬方法可進一步分析其他配送策略,提供業者或決策者參考。

    In recent years, the concept of sharing economy has begun to get attention, the main idea is to share underused assets or resources with others. With the concept of sharing economy, crowdsourced delivery is an innovative solution for last-mile delivery. It recruits crowd for goods delivery service, that is, to use idle space or time of the crowd to assist delivery operations. The traditional delivery service provider can thus reduce operational costs. For example, in order to reduce delivery costs and waiting time, Wal-Mart not only has their own fleets to deliver packages but also tries to find in-store customers to assist delivery service.
    Based on above concept, the purpose of our research is to use agent-based simulation for the dynamic crowdsourced delivery. Agent-based simulation is suitable for complex problems that are difficult to build the mathematical model. The simulation can set agent's (e.g. professional fleets, occasional drivers) behaviors and analyze the impact of changes in environment characteristics on service quality and operational cost. In addition, the simulation result can provide suitable operational recommendation for operators.
    This study establishes an agent-based model of crowdsourced delivery and designs delivery behaviors of individual agents, including order selection, delivery service acceptance, and delivery strategies. The results show that compared with traditional delivery service, crowdsourced delivery services can provide fast, low-cost home delivery service. The sensitivity analysis and delivery strategy analysis also show that agent-based model of this study can be widely used in various delivery scenarios and provide realistic simulation results.

    摘要 i 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究架構與流程 3 第二章 文獻回顧 5 2.1 群眾配送 5 2.1.1 群眾配送相關研究 6 2.1.2 考量偶然配送員之群眾配送相關研究 8 2.2 代理人模型 11 2.2.1 代理人模型應用於運輸模擬相關研究 11 2.3 小結 14 第三章 問題與模擬架構 16 3.1 研究問題描述 16 3.2 群眾配送代理人模擬 19 3.2.1 代理人特徵與選擇策略 22 3.2.2 訂單配送子問題 26 3.2.3 供給及需求產生 28 3.3 績效指標 28 第四章 模擬分析 29 4.1 模擬環境與基本參數設定 29 4.2 模擬範例產生方式 30 4.3 群眾配送服務模式與傳統服務模式 31 4.4 敏感度分析 33 4.4.1 偶然配送員配送範圍 33 4.4.2 偶然配送員配送容量 35 4.4.3 零售商店補償係數 36 4.4.4 偶然配送員配對時間限制 38 4.4.5 專業車隊服務間隔 39 4.4.6 偶然配送員與線上訂單數量比例 41 4.5 配送策略分析 42 4.5.1 偶然配送員配送策略分析 42 4.5.2 專業車隊配送策略分析 46 4.5.2.1 專業車隊出車策略分析 46 4.5.2.2 專業車隊緊急訂單策略分析 48 4.6 小結 56 第五章 結論與建議 59 5.1 結論 59 5.2 研究限制與未來研究建議 61 參考文獻 63

    1.Akeb, H., Moncef, B., & Durand, B. (2018). Building a collaborative solution in dense urban city settings to enhance parcel delivery: An effective crowd model in Paris. Transportation Research Part E: Logistics and Transportation Review, 119, 223-233.
    2.Archetti, C., Savelsbergh, M., & Speranza, M. G. J. E. J. o. O. R. (2016). The vehicle routing problem with occasional drivers. 254(2), 472-480.
    3.Arslan, A. M., Agatz, N., Kroon, L., & Zuidwijk, R. (2018). Crowdsourced delivery—A dynamic pickup and delivery problem with ad hoc drivers. Transportation Science, 53(1), 222-235.
    4.Baykasoglu, A., & Kaplanoglu, V. (2011). A multi-agent approach to load consolidation in transportation. Advances in Engineering Software, 42(7), 477-490.
    5.Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the national academy of sciences, 99(suppl 3), 7280-7287.
    6.Čertický, M., Jakob, M., & Píbil, R. (2016). Simulation testbed for autonomic demand-responsive mobility systems. In Autonomic Road Transport Support Systems (pp. 147-164): Springer.
    7.Čertický, M., Drchal, J., Cuchý, M., & Jakob, M. (2015). Fully agent-based simulation model of multimodal mobility in European cities. Paper presented at the 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS).
    8.Chen, C., Pan, S., Wang, Z., & Zhong, R. Y. (2017). Using taxis to collect citywide E-commerce reverse flows: a crowdsourcing solution. International Journal of Production Research, 55(7), 1833-1844.
    9.Chen, P., & Chankov, S. (2017). Crowdsourced delivery for last-mile distribution: An agent-based modelling and simulation approach. Paper presented at the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).
    10.Cheng, S.-F., & Nguyen, T. D. (2011). Taxisim: A multiagent simulation platform for evaluating taxi fleet operations. Paper presented at the Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Volume 02.
    11.Chevrier, R., Liefooghe, A., Jourdan, L., & Dhaenens, C. (2012). Solving a dial-a-ride problem with a hybrid evolutionary multi-objective approach: Application to demand responsive transport. Applied Soft Computing, 12(4), 1247-1258.
    12.Cich, G., Knapen, L., Maciejewski, M., Bellemans, T., & Janssens, D. (2017). Modeling demand responsive transport using SARL and MATSim. Procedia Computer Science, 109, 1074-1079.
    13.Dahle, L., Andersson, H., & Christiansen, M. (2017). The vehicle routing problem with dynamic occasional drivers. Paper presented at the International Conference on Computational Logistics.
    14.Dahle, L., Andersson, H., Christiansen, M., & Speranza, M. G. (2019). The pickup and delivery problem with time windows and occasional drivers. Computers & Operations Research, 109, 122-133.
    15.Dayarian, I., & Savelsbergh, M. (2017). Crowdshipping and same-day delivery: Employing in-store customers to deliver online orders. Optimization Online, 07-6142.
    16.Fagnant, D. J., & Kockelman, K. M. (2014). The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transportation Research Part C: Emerging Technologies, 40, 1-13.
    17.Fikar, C., Hirsch, P., & Gronalt, M. (2018). A decision support system to investigate dynamic last-mile distribution facilitating cargo-bikes. International Journal of Logistics Research and Applications, 21(3), 300-317.
    18.Gdowska, K., Viana, A., & Pedroso, J. P. (2018). Stochastic last-mile delivery with crowdshipping. Transportation research procedia, 30, 90-100.
    19.Guo, X., Jaramillo, Y. J. L., Bloemhof-Ruwaard, J., & Claassen, G. (2019). On integrating crowdsourced delivery in last-mile logistics: A simulation study to quantify its feasibility. Journal of Cleaner Production, 241, 118365.
    20.Howe, J. J. W. m. (2006). The rise of crowdsourcing. 14(6), 1-4.
    21.Inturri, G., Le Pira, M., Giuffrida, N., Ignaccolo, M., Pluchino, A., Rapisarda, A., & D'Angelo, R. (2019). Multi-agent simulation for planning and designing new shared mobility services. Research in Transportation Economics, 73, 34-44.
    22.Kafle, N., Zou, B., & Lin, J. (2017). Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery. Transportation research part B: methodological, 99, 62-82.
    23.Lam, T., & Li, C. (2015). Crowdsourced delivery. In: Tech. rep., The Fung Business Intelligence Centre.
    24.Le, T. V., Stathopoulos, A., Van Woensel, T., & Ukkusuri, S. V. (2019). Supply, demand, operations, and management of crowd-shipping services: A review and empirical evidence. Transportation Research Part C: Emerging Technologies, 103, 83-103.
    25.Li, B., Krushinsky, D., Reijers, H. A., & Van Woensel, T. (2014). The share-a-ride problem: People and parcels sharing taxis. European Journal of Operational Research, 238(1), 31-40.
    26.Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016a). An adaptive large neighborhood search heuristic for the share-a-ride problem. Computers & Operations Research, 66, 170-180.
    27.Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016b). The Share-a-Ride problem with stochastic travel times and stochastic delivery locations. Transportation Research Part C: Emerging Technologies, 67, 95-108.
    28.Macrina, G., & Guerriero, F. (2018). The Green Vehicle Routing Problem with Occasional Drivers. In New Trends in Emerging Complex Real Life Problems (pp. 357-366): Springer.
    29.Macrina, G., Pugliese, L. D. P., Guerriero, F., & Laganà, D. (2017). The vehicle routing problem with occasional drivers and time windows. Paper presented at the International Conference on Optimization and Decision Science.
    30.Maggi, E., & Vallino, E. (2016). Understanding urban mobility and the impact of public policies: The role of the agent-based models. Research in Transportation Economics, 55, 50-59.
    31.Marcucci, E., Le Pira, M., Gatta, V., Inturri, G., Ignaccolo, M., & Pluchino, A. (2017). Simulating participatory urban freight transport policy-making: Accounting for heterogeneous stakeholders’ preferences and interaction effects. Transportation Research Part E: Logistics and Transportation Review, 103, 69-86.
    32.Martin, C. J. (2016). The sharing economy: A pathway to sustainability or a nightmarish form of neoliberal capitalism? Ecological economics, 121, 149-159.
    33.Martinez, L. M., & Viegas, J. M. (2017). Assessing the impacts of deploying a shared self-driving urban mobility system: An agent-based model applied to the city of Lisbon, Portugal. International Journal of Transportation Science and Technology, 6(1), 13-27.
    34.Martínez, L. M., Correia, G. H. d. A., Moura, F., & Mendes Lopes, M. (2017). Insights into carsharing demand dynamics: outputs of an agent-based model application to Lisbon, Portugal. International Journal of Sustainable Transportation, 11(2), 148-159.
    35.McKinnon, A. C. (2016). A Communal Approach to Reducing Urban Traffic Levels. Kühne Logistics University: Hamburg, Germany.
    36.Nourinejad, M., & Roorda, M. J. (2016). Agent based model for dynamic ridesharing. Transportation Research Part C: Emerging Technologies, 64, 117-132.
    37.Nuzzolo, A., Persia, L., & Polimeni, A. (2018). Agent-Based Simulation of urban goods distribution: A literature review. Transportation research procedia, 30, 33-42.
    38.Paloheimo, H., Lettenmeier, M., & Waris, H. (2016). Transport reduction by crowdsourced deliveries–a library case in Finland. Journal of Cleaner Production, 132, 240-251.
    39.Poeting, M., Schaudt, S., & Clausen, U. (2019). Simulation of an Optimized Last-Mile Parcel Delivery Network Involving Delivery Robots. Paper presented at the Interdisciplinary Conference on Production, Logistics and Traffic.
    40.Rabe, M., Klueter, A., Clausen, U., & Poeting, M. (2016). An approach for modeling collaborative route planning in supply chain simulation. Paper presented at the Proceedings of the 2016 Winter Simulation Conference.
    41.Rai, H. B., Verlinde, S., & Macharis, C. (2018). Shipping outside the box. Environmental impact and stakeholder analysis of a crowd logistics platform in Belgium. Journal of Cleaner Production, 202, 806-816.
    42.Rai, H. B., Verlinde, S., Merckx, J., & Macharis, C. (2017). Crowd logistics: an opportunity for more sustainable urban freight transport? European Transport Research Review, 9(3), 39.
    43.Reyes, D., Erera, A., Savelsbergh, M., Sahasrabudhe, S., & O’Neil, R. (2018). The meal delivery routing problem. Optimization Online.
    44.Rosenkrantz, D. J., Stearns, R. E., & Lewis, I., Philip M. (1977). An analysis of several heuristics for the traveling salesman problem. SIAM journal on computing, 6(3), 563-581.
    45.Wang, Y., Zhang, D., Liu, Q., Shen, F., & Lee, L. H. (2016). Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions. Transportation Research Part E: Logistics and Transportation Review, 93, 279-293.
    46.Wang, Z. (2016). Global B2C E-commerce report 2016. Retrieved from Ecommerce Foundation website: https://www.ecommercewiki.org/wikis/www.ecommercewiki.org/images/5/56/Global_B2C_Ecommerce_Report_2016.pdf
    47.Yildiz, B., & Savelsbergh, M. (2019). Service and capacity planning in crowd-sourced delivery. Transportation Research Part C: Emerging Technologies, 100, 177-199.

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE