簡易檢索 / 詳目顯示

研究生: 陳原信
Chen, Yuan-Hsin
論文名稱: 應用選擇性活化改善氮化鎵系列發光二極體亮度之研究
Improvement in light-output intensity of GaN-based LED devices by selective area activation
指導教授: 洪茂峰
Houng, Mau-Phon
王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 77
中文關鍵詞: 氮化鎵發光二極體選擇性活化
外文關鍵詞: GaN, light emitting diode, selective area activation
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們在p型電極下方產生一高電阻區(SHRR),藉以阻擋電流流通,達到等效於電流阻障層(current blocking layer)的效果,用以增進氮化鎵發光二極體的光輸出效率。在傳統發光二極體設計中,不透明p型電極下所產生的光,其結果不是被電極吸收就是被反射,然後被元件材料本身吸收掉。在我們所提出的SHRR設計中,p型電極所覆蓋的氮化鎵被刻意地定義成具有較高電阻率的區域,進而達到阻擋電流流通及減少光線在p型電極下產生的機會。在定電流測試下,電流會自然地繞過我們刻意定義的高電阻區(SHRR),轉向其他電阻率較低的部分,即未被p型電極所覆蓋的區域,而達到我們所要求的提昇光輸出功率及元件效率。值得一提的是:由於高電阻區的關係, p型電極周圍的電流擁擠效應會有一定程度的減少,所以對於光輸出效率也會有所貢獻。
    15%的光輸出增益,再配合低成本及製程簡單,使得SHRR這項技術在半導體工業中更具有價值。

    A novel selective high resistivity region (SHRR) is created under the p-pad metal electrode of a normal GaN LED. In conventional designs, light generated under the opaque p-pad metal contact is absorbed or reflected back by the contact and lost. In the SHRR design, the area under the p-pad contact is selectively given a higher resistance, reducing current flow and light generation under the contact. Under constant current testing, the current normally passing through the SHRR region is instead distributed over the visible (i.e. useful) area of the device, resulting in significantly increased light-output power and device efficiency. Further, current crowding under the p-pad electrode is reduced, contributing to light-output efficiency.
    The approximately 15% increase in light-output power coupled with low cost and ease of implementation make SHRR of value to the semiconductor industry.

    Abstract (in Chineses)...........................................................I Abstract (in English)..........................................................III Acknowledgement..................................................................V Figure Captions.................................................................VI Chapter 1 Introduction..........................................................1 1-1 GaN-based materials..........................................................1 1-2 The application of LEDs......................................................3 1-3 Overview of this thesis......................................................4 Chapter 2 A survey of GaN-based LED Fabrication.................................6 2-1 The metal-semiconductor contact..............................................6 2-1-1 Ohmic contacts.............................................................7 2-2 The ohmic contact to n-type GaN..............................................8 2-3 The ohmic contact to p-type GaN..............................................9 2-3-1 Multi-layer metal contact.................................................10 2-3-2 Surface treatment.........................................................10 2-3-3 Semiconductor band gap engineering........................................11 2-3-4 Alloying Ni/Au ohmic contacts in oxygen ambient...........................12 2-3-5 The increase of hole concentration in p-type GaN..........................12 2-4 Mg-doped GaN activation.....................................................13 2-4-1 Minority-carrier-enhanced activation......................................14 2-4-2 Photo-enhanced activation.................................................15 2-4-3 Microwave treatment.......................................................15 2-4-4 Thermal activation with nickel film.......................................15 2-4-5 Laser-induced activation..................................................16 2-4-6 Thermal activation in O2 ambient..........................................16 2-5 The enhancement of light-output intensity...................................17 2-5-1 Current-spreading layer in LED devices....................................17 2-5-2 Current-blocking layer in LED devices.....................................19 2-5-3 Light extraction..........................................................20 2-5-3-1 Antireflection coatings.................................................20 2-5-3-2 Surface-textured........................................................21 2-5-3-3 Surface-roughening......................................................22 2-6 High power LEDs.............................................................22 2-6-1 AlInGaP LEDs..............................................................23 2-6-2 GaN-based LEDs............................................................23 Chapter 3 Elucidation of Selective Area Activation and Device Fabrication......25 3-1 Introduction to selective area activation...................................25 3-1-1 What is Selective Area Activation?.......................................25 3-1-2 The Origin of Selective Area Activation...................................26 3-2 The concept of the experiment...............................................26 3-2-1 The activation temperature to achieve current blocking effect.............27 3-2-2 Design of experiment......................................................27 3-3 Sample preparation for Hall measurement & TLM...............................28 3-3-1 Hall measurement..........................................................28 3-3-2 TLM.......................................................................28 3-4 The fabrication of GaN-based LED chips with selective area activation.......28 Chapter 4 Experimental Results and Discussion..................................32 4-1 Hall effect measurement & TLM...............................................32 4-2 GaN-based LED Device characteristics........................................34 4-2-1 Device performances.......................................................34 4-2-1-1 Forward bias voltage....................................................34 4-2-1-2 Luminous Intensity......................................................35 4-2-2 The comparison between previous work and our own..........................36 4-3 L-I characteristic..........................................................38 4-4 Analysis of current blocking effect by Adobe Photoshop......................39 Chapter 5 Conclusion and Future Work...........................................41 5-1 Conclusion..................................................................41 5-2 Future work.................................................................42 Reference.......................................................................43

    [1] L.McCarthy, P. Kozodoy, M. Rodwell, S. DenBaars, and U. Mishra, Compound Semiconductor 4(8), 16 (1998)
    [2] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J. J. Klaasen, R. F. Kopf, H. Cho, K.B. Baca, and S. J. Pearton, MRS Internet J. Nitride Semicond. Res. 3, 41 (1998)
    [3] S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett. 64, 1987 (1994)
    [4] S. Nakamura, M. Senoh, N. Iwasa and S. I. Nagahama, Jpn. J. Appl. Phys. 34, L797 (1995)
    [5] W. Xie, D. C. Grillo, R. L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A. V. Nurmikko, G. C. Hua, and N. Otsuka, Appl. Phys. Lett. 60, 1999 (1992)
    [6] D. E. Eason, Z. Yu, W. C. Hughes, W. H. Roland, C. Boney, J.W. Cook, Jr., J.F. Schetzina, G. Cantwell and W. C. Harasch, Appl. Phys. Lett. 66, 115 (1995)
    [7] D. Schmitz, E. Woelk, G. Strauch, M. Deschler, and H. Jurgensen, Materials Science and Engineering: B. 43, 228 (1997)
    [8] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. burns, J. Appl. Phys. 76, 1363 (1994)
    [9] J. S. Foresi, T. D. Moustakas, Appl. Phys. Lett.62, 702 (1993)
    [10] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. burns, J. Appl. Phys. 76, 1363 (1994)
    [11] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986)
    [12] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, N. Sawaki, J. Crystal Growth 98, 209 (1989)
    [13] I. Akasaki, H. Amano, Journal of Crystal Growth 163,86 (1996)
    [14] H. Amano, M. Kito, K. Hiramatsu, N. Sawaki, and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989)
    [15] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 31, 1258 (1992)
    [16] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)
    [17] H. AMANO, S. KAMIYAMA, and I. AKASAKI, Proceeding of the IEEE 90, 1015 (2002)
    [18] S. M. Sze, Physics of semiconductor devices (John Wiley & Sons, 1969), pp.369-370
    [19] S. W. Kim et al., Appl. Phys. Lett. 76, 3079 (1998)
    [20] Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 68, 1672 (1996)
    [21] S. J. Cai, R. Li, Y. L. Chen, L. Wong, W. G. Wu, S. G. Thomas, and K. L. Wang, Electron Lett. 34, 2354 (1998)
    [22] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, Appl. Phys. Lett. 62, 1786 (1993)
    [23] B. P. Luther, S. E. Mohney, J. M. Delucca, and R. F. Karlicek, Jr., J. Electron. Mater. 27, 196 (1998)
    [24] S. Ruvimov, Z. L. Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z.F. Fan, S. N. Mohammad, W. Kim, A. E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 69, 1556 (1996)
    [25] B. P. Luther, S. E. Mohney, T. N. Jackson, M. A. Khan, Q. Chen, and J. W. Yang, Appl. Phys. Lett. 70, 57 (1997)
    [26] L. F. Lester, J. M. Brown, J. C. Ramer, L. Zhang, S. D. Hersee, and J. C. Zolper, Appl. Phys. Lett. 69, 2737 (1996)
    [27] J. C. Zolper, D. J. Rieger, A. G. Baca, S. J. Pearton, J. W. Lee, and R. A. Stall, Appl. Phys. Lett. 68, 538 (1996)
    [28] J. Burn, K. Chu, W. A. Davis, W. J. Schaff, L. F. Eastman, and T. J. Eustis, Appl. Phys. Lett. 70, 464 (1997)
    [29] T. Mori, T. Kozawa, T. Ohwaki, and Y. Taga, Appl. Phys. Lett. 69, 3537 (1996)
    [30] G. Mohs, B. Fluegel, H. Giessen, H. Tajalli, and N. Peyghambarian, Appl. Phys. Lett. 67, 1515 (1995)
    [31] S. Nakamura, M. Senoh, S. Nagaham, N. Iwasa, T. Matsushuta, H. Kiyiku, and Y. Suimoto, Appl. Phys. Lett. 68, 3269 (1996)
    [32] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, J. Appl. Phys. 81, 1315 (1997)
    [33] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, J. Appl. Phys. 83, 3127 (1998)
    [34] D. J. King, L. Zhang, J. C. Raner, S. D. Hersee, and L. F. Lester, Mat. Res. Soc. Symp. Proc. 468, 421 (1997)
    [35] T. Kim, J. Khim, S. Chae, and T. Kim, Mat. Res. Soc. Symp. Proc. 468, 427 (1997)
    [36] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, Appl. Phys. Lett. 73, 2953 (1998)
    [37] J. S. Jang, H. G. Kim, K. H. Park, C. S. Um, I. K. Han, S. H. Kim, H. K. Jang, and S. J. Park, Mat. Res. Soc. Symp. Proc. 482, 1053 (1998)
    [38] J. S. Jang, I. S. Chang, H. K. Kim, T.Y. Seong, S. Lee, and S. J. Park, Appl. Phys. Lett. 74, 70 (1999)
    [39] Ho Won Jang, Ki Hong Kim, Jong Kyu Kim, Soon-Won Hwang, Jung Ja Yang, Kang Jae Lee, Sung-Jin Son, and Jong-Lam Lee, Appl. Phys. Lett. 79, 1822 (2001)
    [40] Chen-Fu Chu, C. C. Yu, Y. K. Wang, J. Y. Tsai, F. I. Lai, and S. C. Wang, Appl. Phys. Lett. 77, 3423 (2000)
    [41] Y. Koide, H. Ishikawa, S. Kobayashi, Y. Yamasaki, S. Nagai, J. Umezaki, M. Koike, M. Murakami, Appl. Surface. Science, 373 (1997)
    [42] X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. V. Hove, Appl. Phys. Lett. 75, 4130 (1999)
    [43] J. L. Lee, J. K. Kim, J. W. Lee, Y. J. Park, and T. Kim, Solid-state Electronics 43, 435 (1999)
    [44] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, Appl. Phys. Lett. 73, 2953 (1999)
    [45] J. K. Kim, J. L. Lee, J. W. Lee, Y. J. Park, and T. Kim, J. Vac. Sci. Technol. B17, 497 (1999)
    [46] J. L. Lee, J. K. Kim, J. W. Lee, Y. J. Park, and T. Kim, J. Electrochem. Soc. 3, 53 (2000)
    [47] A. P. Zhang, B. Luo, J. W. Johnson, F. Ren, J. Han, and S. J. Pearton, Appl. Phys. Lett.79, 3636 (2001)
    [48] Y. Koide, T. Madea, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, and M. Murakami, J. Electr. Mater. 28, 341 (1998)
    [49] J. K. Ho, C. S. Jong, C. N. Huang, C. Y. Chen, C. C. Chiu, and K. K. Shih, Appl. Phys. Lett. 74, 1275 (1999)
    [50] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, J. Appl. Phys. 86, 4491 (1999)
    [51] M. Suzuki, T. Kawakami, T. Arai, S. Kobayashi, Y. Koide, T. Uemura, N. Shibata, and M. Murakami, Appl. Phys. Lett. 74, 275 (1999)
    [52] J. A. Van Vechten, J. D. Zook, R. D. Horning and B. Goldenberg: Jpn. J. Appl. Phys. 31, 3662 (1992)
    [53] S. J. Chang, Y. K. Su, T. L. Tsai, C.Y. Chang, C. L. Chiang, C. S. Chang, T. P. Chen and K. H. Huang: Appl. Phys. Lett. 78, 312 (2001)
    [54] B. A. Hull, S. E. Mohney, H. S. Venugoplan and J. C. Ramer: Appl. Phys. Lett. 76, 2271 (2000)
    [55] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 32, L8 (1993)
    [56] S. J. Pearton, J. W. Lee, and C. Yuan, Appl. Phys. Lett. 68, 2690 (1996)
    [57] M. Miyachi, T. Tanaka, Y. Kimura, and Hiroyuki Ota, Appl. Phys. Lett. 72, 1101 (1998)
    [58] Y. Kamiura, Y. Yamashita, and S. Nakamura, Jpn. J. Appl. Phys. 37, L970 (1998)
    [59] S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang, T. P. Chen, and K. H. Huang, Appl. Phys. Lett. 78, 312 (2001)
    [60] I. Waki, H. Fujioka, M. Oshima, H. Miki and A. Fukizawa, Appl. Phys. Lett. 78, 2899 (2001)
    [61] Y. C. Cheng, C. C. Liao, S. W. Feng, C. C. Yang, Y. S. Lin, K. J. Ma, C. C. Chou, C. M. Lee, and J. I. Chyi, Jpn. J. Appl. Phys. 40, 2143 (2001)
    [62] B. A. Hull, S. E. Mohney, H. S. Venugopalan, and J. C. Ramer, Appl. Phys. Lett. 76, 2271 (2000)
    [63] T. C. Wen, S. C. Lee, W. -I Lee, T. Y. Chen, S. H. Chan, and J. S. Tsang, Jpn. J. Appl. Phys. 40, L495 (2001)
    [64] C. H. KUO, S. J. CHANG, Y. K. SU, L. W. WU, J. K. SHEU1, C. H. CHEN and G. C. CHI, Jpn. J. Appl. Phys. 41, L112 (2002)
    [65] M. R. Krames et al., Appl. Phys. Lett. 75, 2365 (1999)
    [66] J. J. Wierer, Appl. Phys. Lett. 78, 3379 (2001)
    [67] G. B. Stringfellow et al., “High Brightness Light Emitting Diodes”, Academic Press, chap. 5 (1997)
    [68] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, Appl. Phys. Lett. 77, 1903 (2000)
    [69] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, and K. K. Shih, Appl. Phys. Lett. 74, 1275 (1999)
    [70] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, Appl. Phys. Lett. 74, 2340 (1999)
    [71] J. K. Sheu, G. C. Chi, and M. J. Jou, IEEE Electron Device Lett. 22, 160 (2001)
    [72] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, IEEE Electron Device Lett. 22, 460 (2001)
    [73] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, Appl. Phys. Lett. 74, 3930 (1999)
    [74] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, IEEE Photonics Technology Lett. 15, 646 (2003)
    [75] Chul Huh, Ji-Myon Lee, Dong-Joon Kim, and Seong-Ju Park, J. Appl. Phys. 92, 2248 (2002)
    [75] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Schere, Appl. Phys. Lett. 63, 2174 (1993)
    [76] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, IEEE Photonics Tech. Lett. 15, 649 (2003)
    [77] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, J. Appl. Phys. 93, 9383 (2003)
    [78] M. R. Krames et al., Appl. Phys. Lett. 75, 2365 (1999)
    [79] J. J. Wierer et al., Appl. Phys. Lett. 78, 3379 (2001)
    [80] I. Waki, H. Fujioka, and M. Oshima, J. Appl. Phys 90, 6500(2001)
    [81] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 31, 1258 (1992)
    [82] Y. Kamii, I. Waki, H. Fujioka, M. Oshima, H. Miki, M. Okuyama, Applied Surface Science 190, 348 (2002)
    [83] J. K. Kim, J. H. Je, J. W. Lee, Y. J. Park, T. Kim, In-On Jung, B. T. Lee, J. L. Lee, Journal of Electronic Materials 30, L8 (2001)
    [84] S. X. Jin, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 77, 3236 (2000)
    [85] H. Kim, Seong-Ju Park, and H. Hwang, IEEE TRANSACTIONS ON ELECTRON DEVICES 48, 1065 (2001)

    下載圖示 校內:2004-07-04公開
    校外:2004-07-04公開
    QR CODE