| 研究生: |
陳美欣 Chen, Mei-Shing |
|---|---|
| 論文名稱: |
研究凝血酶調節素細胞質功能區參與細胞-細胞間黏著的可能角色 Investigating the putative role of thrombomodulin cytoplasmic domain on cell-cell adhesion |
| 指導教授: |
吳華林
wu, Ha-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 凝血酶調節素 、細胞質功能區 、黏著 |
| 外文關鍵詞: | thrombomodulin, cytoplasmic domain, adhesion |
| 相關次數: | 點閱:92 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝血酶調節素(Thrombomodulin ,TM )是一種表現於血管內皮細胞表面的醣蛋白,主要的功能是藉著結合凝血酶而活化蛋白質C進而達到抑制凝血反應。TM基因轉譯出557 個胺基酸,其蛋白質結構從氮端依序被分為lectin-like結構區, EGF-like 結構區, serine/ threonine-rich結構區, transmembrane結構區及碳端的cytoplasmic結構區。在先前的研究中,將突變的TM基因轉染至黑色素瘤細胞中顯示了TM基因調節細胞的生長速率是同時需要完整的lectin-like結構區及cytoplasmic結構區。因此我們認為TM的cytoplasmic結構區可能參與一些生理的功能。本篇研究中,我們觀察到在穩定表現TM基因的人類黑色素瘤A2058 細胞中,細胞是以很緊密相鄰的群落型態聚集生長,而且TM會明顯地聚集在細胞間的邊界上。相反的,在穩定表現缺失TM cytoplasmic結構區基因的人類黑色素瘤A2058 細胞中,細胞是獨立分散生長且失去了細胞與細胞間的黏著,這暗示著TM cytoplasmic結構區有參與調節細胞與細胞間黏著的角色。再更進一步,TM cytoplasmic結構區顯示有四個可能發生磷酸化的胺基酸位置包括 534 Tyr , 540 Ser , 550 Thr ,及 553 Thr,還有經由電腦軟體預測出含有PDZ蛋白結合的位置、WW蛋白結合的位置以及PKC磷酸化的位置;我們已藉由定點突變的方式將上述的胺基酸突變來分析它們對細胞形態的影響;我們注意到在PDZ 蛋白結合位置上542 Glu 以及WW 蛋白結合位置上兩個threonine(550,553)對於維持細胞聚集的形態是很重要的。除此之外,藉由MTT assay分析HEK293 細胞的生長速率,發現表現野生型TM 1.7 的細胞其生長速率比起表現TM △lec , TM △Cyt及空白載體的HEK293 細胞慢了許多,顯示TM lectin-like結構區及cytoplasmic結構區對於調節細胞生長扮演很重要的角色。最後,pERK以及PKC訊息傳遞路徑在表現TM的細胞中似乎有參於調節的角色。
Thrombomodulin (TM ) expresses on endothelial cell surface, and functions as a thrombin receptor to inhibit procoagulant reaction of thrombin by activation of protein C. TM gene encodes 557 amino acids, consisting of five distinct domains including N-terminal lectin-like domain, six epidermal growth factor-like (EGF-like) domain, serine/threonine -rich domain, transmembrane domain, and an intraceullar cytoplasmic tail. In previous study, transfection of melanoma cells with mutated TM constructs indicated that the effect of TM on proliferation required intact cytoplasmic and extracellular N-terminal lectin-like domain. It is possible that the cytoplasmic domain participates in some physiological functions. In this report, we observe that TM-expressed A2058 cells grow as closely clustered colonies, with TM localized prominently in the intercellular boundaries. Conversely, TM detected cytoplasmic domain-expressed A2058 cells grow singly with loose cell-cell adhesion. It implies that TM cytoplasmic domain plays a role in regulating cell-cell adhesion. Furthermore, TM shows 4 potential phosphorylated sites including one tyrosine534, one serine540, and two threonine(550,553), a computer predicted PDZ protein binding site, WW protein binding site and a protein kinase C phosphorylation site on its cytoplasmic domain. We analyze the role of these residues on cell morphology by site-directed mutagenesis. We notice that glutamine acid542 in the PDZ binding region and threonine(550,553) in WW binding site are important in affecting cell-cell adhesion morphology. Furthermore, the proliferation rates of HEK293 cell lines are performed by MTT assay that result shows that wild type TM1.7-expressed HEK293 cells with a decreased growth rate than HEK293-△lec , △cyt , and vector control. It suggests that TM’s lectin-like domain and cytoplasmic domain play an important role in regulating cell proliferation. Finally, pERK and PKC signaling pathway seem to play a role in modulating TM-expressed cell’s function.
1 Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic
pathway. Arterioscler Thromb Vasc Biol. 20:2511-8 (2000)
2 Boffa MC, Burke B, Haudenschild CC. Preservation of thrombomodulin
antigen on vascular and extravascular surfaces. J Histochem Cytochem.
35:1267-1276 (1987)
3 Broze GJ Jr, Higuchi DA. Coagulation-dependent inhibition of
fibrinolysis:role of carboxypeptidase and the premature lysis of clots from
hemophilic plasma. Blood 88:3815-23 (1996)
4 Collins CL, Ordonez NG, Scharfer R, Cook CD, Xie SS, Granger J, Hsu PL,
Fink L, Hsu SM. Thrombomodulin expression in malignant pleural
mesothelioma and pulmonary adenocarcinoma. Am J Pathol. 141:827-833
(1992)
5 Conway E, Nowakowski B, Steiner-Mosonyi M. Thrombomodulin lacking the
cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated,
pit-mediated endocytosis. J. Cell Physiol. 158:285-98 (1994)
6 Conway EM, Pollefeyt S, Collen D, Steiner-Mosonyi M. The amino terminal
lectin-like domain of thrombomodulin is required for constitutive
endocytosis.Blood 89:652-61 (1997)
7 Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De
Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen
D, Theilmeier G. The lectin-like domain of thrombomodulin confers protection
from neutrophil-mediated tissue damage by suppressing adhesion molecule
expression via nuclear factor kappaB and mitogen-activated protein kinase
pathways. J Exp Med. 196:565-77 (2002)
8 de Munk GA, Parkinson JF, Groeneveld E, Bang NU, Rijken DC. Role of
the glycosaminoglycan component of thrombomodulin in its acceleration of the
inactivation of single-chain urokinase-type plasminogen activator by
thrombin.Biochem. J. 290:655-9 (1993)
9 DeBault LE, Esmon NL, Olson JR, Esmon CT. Distribution of the
thrombomodulin antigen in the rabbit vasculature. Lab. Invest. 54:172-8
(1986)
10 Esmon CT. Thrombomodulin as a model of molecular mechanism that
modulate protease specificity and function at the vessel surface. FASEB J.
9:946-55 (1995)
11 Esmon CT, Esmon NL, Harris KW. Complex formation between thrombin
and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and
factor V activation. J. Biol. Chem. 257:7944-7 (1982)
12 Honda G, Masaki C, Zushi M, Tsuruta K, Sata M. The roles played by the
D2 and D3 domains of recombinant human thrombomodulin in its function. J.
Biochem. 118:1030-6 (1995)
13 Honda G, Masaki C, Zushi M, Tsuruta K, Sata M. The roles played by the
D2 and D3 domains of recombinant human thrombomodulin in its function. J.
Biochem. 118:1030-6 (1995)
14 Hung AY. PDZ domains: structural modules for protein complex assembly.
J Biol Chem 22;277(8) : 5699-702 (2002)
15 Huang HC, Shi GY, Jiang SI, Shi CS, Wu CM, Yang HY, Wu HL.
Thrombomodulin-mediated cell adhesion : involvement of its lectin-like
domain.J. Biol. Chem. 278:46750-9 (2003)
16 Jean PB. ERBIN: a basolateral PDZ protein that interacts with the mammalian
ERBB2/HER2 receptor. Nature Cell Biology 2, 407 - 414 (2000)
17 Kokame K, Zheng X, Sadler JE. Activation of thrombin-activable fibrinolysis
inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin
and it’s inhibited competitively by protein C. J. Biol. Chem. 273:12135-9
(1998)
18 Koyama T, Parkinson JF, Aoki N, Bang NU, Muller-Berghaus G, Preissner
KT. Relationship between post-translational glycosylation and anticoagulant
function of secretable recombinant mutants of human thrombomodulin. Br. J
Haematol. 78:515-22 (1991)
19 Kurosawa S, Galvin JB, Esmon NL, Esmon CT. Proteolytic formation and
properties of functional domains of thrombomodulin. J. Biol. Chem.
262:2206-12 (1987)
20 Mizutani H, Ohyanagi S, Hayashi T, Groves RW, Suzuki K, Shimizu M.
Functional thrombomodulin expression on epithelisl skin tumours as a
differentiation marker for suprabasal keratinocytes. Br. J. Dermatol.
135:187-93 (1996)
21 Polgar J, Lerant I, Muszbek L, Machovich R. Thrombomodulin inhibits the
activation of factor XIII by thrombin. Thromb. Res. 43:685-90 (1986)
22 Raife TJ, Lager DJ, Peterson JJ, Erger RA, Lentz SR. Keratinocyte-specific
expression of human thrombomodulin in transgenic mice : effects on epidermal
differentiation and cutaneous wound healing. J. Investig. Med. 46:127-33
(1998)
23 Sandusky G, Berg DT, Richardson MA, Myers L, Grinnell BW. Modulation
of thrombomodulin-dependent activation of human protein C through
differential expression of endothelial Smads. J. Biol. Chem. 277:49815-9
(2002)
24 Schenk-Braat EA, Morser J, Rijken DC. Identification of the epidermal
growth factor-like domains of thrombomodulin essential for the acceleration
of thrombin-mediated inactivation of single-chain urokinase-type plasminogen
activator. Eur. J. Biochem. 268:5562-9 (2001)
25 Sheng M, Sala C. PDZ domains and the organization of supramolecular
complexes. A nnu Rev Neurosci.;24:1-29 (2001)
26 Shirai T, Shiojiri S, Ito H, Yamamoto S, Kusumoto H, Deyashiki Y,
Maruyama I, Suzuki K. Gene structure of human thrombomodulin, a cofactor
for thrombin-catalyzed activation of protein C. J. Biochem. 103:281-5 (1988)
27 Sonya WS. IIp45, an insulin-like growth factor binding protein 2 (IGFBP-2)
binding protein, antagonizes IGFBP-2 stimulation of glioma cell invasion.
Proc Natl Acad Sci 100(24): 13970–13975 (2003)
28 Stricker NL. PDZ domain of neuronal nitric oxide synthase recognizes novel
C-terminal peptide sequences.Nat Biotechnol 15(4) : 336-42 (1997)
29 Tamura A, Matsubara O, Hirokawa K, Aoki N. Detection of thrombomodulin
in human lung cancer cells. Am J Pathol. 142: 79–85, (1993)
30 Teasdale M, Bird C, Bird P. Internalization of the anticoagulant
thrombomodulin is constitutive and does not require a signal in the
cytoplasmic domain. Immunol Cell Biol. 72:480-488 (1994)
31 Tony N. Ezrin is a downstream effector of trafficking PKC-integrin complexes
involved in the control of cell motility. The EMBO Journal 20:2723-2741
(2001)
32 Van de Wouwer M, Conway EM. Novel functions of thrombomodulin in
inflammation. Crit Care Med. 32:S254-261 (2004)
33 hang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K,
Klevesath M, Wilhelm S, Bohrer H, Nakagawa M, Graeff H, Martin E,
Stern D, Rosenberg R, Ziegler R, Nawroth P. Thrombomodulin modulates
growth of tumor cells independent of its anticoagulant activity. J. Clin.
Invest.101:1301-9 (1998)