| 研究生: |
李國婷 Lee, Kuo-ting |
|---|---|
| 論文名稱: |
探討阿拉伯芥中MKK2訊息傳遞途徑影響銅耐受性之反應 The MAP Kinase Kinase MKK2 Pathway Affects Copper Tolerance in Arabidopsis |
| 指導教授: |
黃浩仁
Hung, Hao-jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 銅耐受性 |
| 外文關鍵詞: | MKK2 |
| 相關次數: | 點閱:85 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
真核生物中MAPK( Mitogen-activated protein kinase)訊息傳遞路徑參與了許多發育和生理反應的過程,其中也包含了生物和非生物逆境下所誘發不同的訊息傳遞路徑。MAPK訊息傳遞路徑主要藉由MAPKKK-MAPKK-MAPK模式所引發下游的級聯反應。目前阿拉伯芥中已被確認至少有20個MAPKs、10個MAPKKs,其中前人的研究已經指出,MKK1及MKK2參與了許多生物及非生物逆境反應;然而,MKK2在金屬逆境下所扮演的角色尚未被清楚的研究。
本篇研究中,我們指出MKK2在阿拉伯芥遭遇銅逆境時扮演了很重要的調控角色,若大量表現活化MKK2會使得植物對銅逆境較具有耐受性。若將野生型、mkk2突變株、及MKK2大量活化表現的植株MKK2-EE4以銅處理七天,則會發現MKK2-EE4根部生長受抑制的情形明顯較野生型植株及mkk2突變株減緩。而相較於野生型植株及mkk2突變株,我們發現銅逆境造成的MKK2-EE4植株根部細胞死亡程度會減少,並且活性氧的產生會增加。另外,觀察細胞內的金屬離子含量,結果發現以銅處理3小時後mkk2根部細胞內銅離子的含量明顯比野生型wild type多;相較之下MKK2-EE4則比野生型wild type植株少。由結果可知在銅逆境下,MKK2的大量表現可能引發下游訊息傳遞路徑,進而影響銅離子在細胞內的含量。
綜合以上的結果,我們可推論在銅逆境下AtMKK2 可活化下游的訊息傳遞路徑並產生大量的活性氧作為訊息傳遞分子影響下游基因的表現使得銅離子在細胞內的累積較少,進而對銅逆境較有耐受性。
Eukaryotic mitogen-activated protein kinase (MAPK) signalling pathway acts downstream of receptors or sensors to transduce extracellular stimuli, including abiotic and biotic stresses, into adaptive, intracellular responses. A MAPK pathway minimally consists of a MAPKKK-MAPKK-MAPK module. The Arabidopsis thaliana MKK1 and MKK2 MAP kinase kinases have been implicated in biotic and abiotic stress responses, but the role of the MKK2 in metal signalling pathway is unknown.
In this study, we evaluated the role of the MKK2 in regulating copper stress responses in Arabidopsis . Overexpressing of MKK2 enhanced Arabidopsis resistance to copper stress. When wild type, mkk2 and MKK2-EE4 seedlings were subjected to copper treatment for 7 days, the root elongation of MKK2-EE4 plants were significantly higher than the wild type and mkk2 mutant plants. Copper induced cell death was reduced and reactive oxygen species (ROS) production was accumulated in MKK2-EE4 plants compared with wild type and mkk2 mutant plants. In addition, 200 μM copper supply resulted in higher copper concentration in mkk2 mutant roots as compared to wild type, and the copper concentration in MKK2-EE4 roots was lower than the wild type plants. Taken together these results demonstrate that MKK2 signalling is involved in Arabidopsis copper tolerance and the uptake and storage of copper are also affected by this signalling pathway.
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, ZimmermanJ, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657
Alzwiy IA, Morris PC (2007) A mutation in the Arabidopsis MAP kinase kinase 9 gene results in enhanced seedling stress tolerance. Plant Science 173: 302-308
Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24: 2579-2589
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity.Nature 415: 977-983
Baker A.J.M. & Brooks R.R. (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:1–126
Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20: 1195-1197
Bert V., Bonnin I., Saumitou-Laprade P., de Laguerie P. & Petit D. (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytologist 155, 47–57
Bessire M, Chassot C, Jacquat AC, Humphry M, Borel S, Petetot JM, Metraux JP, Nawrath C, (2007) A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J 26: 2158-2168
Brader G, Djamei A, Teige M, Palva ET, Hirt H (2007) The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis. Mol Plant Microbe Interact 20: 589-596
Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47: 532-546
Caspersen MB, Qiu JL, Zhang X, Andreasson E, Naested H, Mundy J, Svensson B (2007)Phosphorylation sites of Arabidopsis MAP kinase substrate 1 (MKS1). Biochim Biophys Acta 1774: 1156-1163
Clemens S., Kim E.J., Neumann D. & Schroeder J.I. (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO Journal 18: 3325–3333
Connolly E.L., Fett J.P. & Guerinot M.L. (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14: 1347–1357
Dahmani-Muller H., van Oort F., Gelie B. & Balabane M. (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution 109: 231–238
Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126: 1579-1587
De Vos C., Vonk M., Vooijs R. & Schat H. (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98: 853–858
Dominguez-Solis J., Gutierrez-Alcala G., Romero L. & Gotor C. (2001) The cytosolic O-acetylserine (thiol) lyase gene is regulated by heavy metals and can function in cadmium tolerance. Journal of Biological Chemistry 276: 9297–9302
Engelberth J, Schmelz EA, Alborn HT, Cardoza YJ, Huang J, Tumlinson JH (2003)
Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal Biochem 312: 242-250
Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for Snitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102: 8054-8059
Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005) A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol 46: 1902-1914
Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2: 513-523
Hadiarto T, Nanmori T, Matsuoka D, Iwasaki T, Sato K, Fukami Y, Azuma T, Y asuda T (2006) Activation of Arabidopsis MAPK kinase kinase (AtMEKK1) and induction of AtMEKK1-AtMEK1 pathway by wounding. Planta 223: 708-713
Huang Y, Li H, Gupta R, Morris PC, Luan S, Kieber JJ (2000) ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol 122: 1301-1310
Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006) MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem 281: 36969-36976
Ichimura K, Mizoguchi T, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Isolation of ATMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem Biophys Res Commun 253: 532-543
Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24: 655-665
Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang SQ, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science 7: 301-308
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003a) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003b) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249-264
Jonak C., Nakagami H. & Hirt H. (2004) Heavy metal stress: activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiology 136: 3276–3283
Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: 427-441
Lee A, Cho K, Jang S, Rakwal R, Iwahashi H, Agrawal GK, Shim J, Han O (2004) Inverse correlation between jasmonic acid and salicylic acid during early wound response in rice. Biochem Biophys Res Commun 318: 734-738
Loake G, Grant M (2007) Salicylic acid in plant defence - the players and protagonists. Opinion in Plant Biology 10: 466-472
Locke JM, Bryce JH, Morris PC (2000) Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.). Journal of Experimental Botany 51: 1843-1849
Madhani HD, Fink GR (1998) The riddle of MAP kinase signaling specificity. Trends Genet 14: 151-155
Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess
overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448-3449
Matsuoka D, Nanmori T, Sato K, Fukami Y, Kikkawa U, Yasuda T (2002) Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J 29: 637-647
Mészáros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardóczy V, Teige M, Koncz C, Peck S, Bögre L (2006) The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant J 48: 485-498
Mittler R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405–410
Mizoguchi T, Ichimura K, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett 437: 56-60
Morris PC, Guerrier D, Leung J, Giraudat J (1997) Cloning and characterisation of MEK1, an Arabidopsis gene encoding a homologue of MAP kinase kinase. Plant Mol Biol 35: 1057-1064
Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006) A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281: 38697-38704
Nielsen HB, Mundy J, Willenbrock H (2007) Functional Associations by Response Overlap (FARO), a functional genomics approach matching gene expression phenotypes. PLoS ONE 2: e676
Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103: 1111-1120
O’Halloran T. & Culotta V. (2000) Metallochaperones, an intracellular shuttle service for metal ions. Journal of Biological Chemistry 275: 25057–25060
Qiu JL, Jilk R, Marks MD, Szymanski DB (2002) The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell 14: 101-118
Perfus-Barbeoch L., Leonhardt N., Vavasseur A. & Forestier C. (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant Journal 32: 539–548
Pinot F., Kreps S., Bachelet M., Hainaut P., Bakonyi M. & Polla B. (2000) Cadmium in the environment: sources, mechanisms of biotoxicity, and biomarkers. Reviews in Environmental Health 15: 299–323
Ryals J, Lawton KA, Delaney TP, Friedrich L, Kessmann H, Neuenschwander U, Uknes S, Vernooij B, Weymann K (1995) Signal transduction in systemic acquired resistance. Proc Natl Acad Sci U S A 92: 4202-4205
Seo S, Katou S, Seto H, Gomi K, Ohashi Y (2007) The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant J 49: 899-909
Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A highthroughput Arabidopsis reverse genetics system. Plant Cell 14: 2985-2994
Rodriguez F.I., Esch J.J., Hall A.E., Binder B.M., Schaller G.E. & Bleecker A.B. (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998
Sanita di Toppi L. & Gabbrielli R. (1999) Response to cadmium in higher plants. Environmental and Experimental Botany 41: 105–130
Stohs S.J. & Bagchi D. (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radicals in Biology and Medicine 18:321–336
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498-2504
Su SH, Suarez-Rodriguez MC, Krysan P (2007) Genetic interaction and phenotypic analysis of the Arabidopsis MAP kinase pathway mutations mekk1 and mpk4 suggests signaling pathway complexity. FEBS Lett 581: 3171-3177
Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ, Zhang S, Bent AF, Krysan PJ (2007) MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 143: 661-669
Suzuki K, Yano A, Shinshi H (1999) Slow and prolonged activation of the p47 protein kinase during hypersensitive cell death in a culture of tobacco cells. Plant Physiol 119: 1465-1472
Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15: 141-152
Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4: 645-656
Weber M., Trampczynska A., Clemens S.(2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant, cell and environment 29: 950-963
Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562-565
Xing Y, Jia W, Zhang J (2007) AtMEK1 mediates stress-induced gene expression of CAT1catalase by triggering H2O2 production in Arabidopsis. J Exp Bot 58: 2969-2981
Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci U S A 98: 741-746
Zhang X, Dai Y, Xiong Y, Defraia C, Li J, Dong X, Mou Z (2007) Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J 52: 1066-1079
Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7: 2
Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48: 592-605