簡易檢索 / 詳目顯示

研究生: 鐘健華
Chung, Chien-Hua
論文名稱: 具微米定位能力之壓電式致動器設計及實現
Piezoelectric Actuator Design with Micro Positioning Capability and It’s Practical Implementation
指導教授: 陳永裕
Chen, Yung-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 81
中文關鍵詞: 壓電致動器遲滯現象回授線性化強健控制
外文關鍵詞: piezoelectric actuator, micrometer (um) positioning, hysteresis, feedback linearization, robust control
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓電致動器因具微米尺度位移能力與體積精巧等特性而被廣泛應用於精密機械產業的領域中。然而,就壓電式致動器目前無論於產品應用或實驗上之使用情況看來,因其天生於特性上具高度非線性遲滯行為及外界環境中微小干擾等都會對其微米尺度之控制性能造成極大之影響而導致定位精準度的大幅降低。為了消除上述元件內部行為特性與外在環境因素對壓電致動器微米定位之影響,本研究嘗試藉數理分析與非現控制器設計等設計概念,對微米定位等級的壓電致動器之運動行為進行微米控制設計。本論文結合了非線性 feedback linearization method與強健控制之方法來設計具抑制外擾及遲滯特性之壓電式致動器控制器。本研究除理論上之嚴謹分析外並結合模擬技巧進行實際驗證前之參數選取。最終,本論文將此控制理論實現並且應用於實際的壓電致動器微米定位控制上並獲致良好之定位成果。

    Due to the developments of precision industrial machineries, the microscale positioning ability for the relative apparatus requires small size and high accuracy, and the piezoelectric actuator is one of means has this feature hence piezoelectric actuator plays an important role in this field for its microscale movement ability. Unfortunately, the nonlinear hysteresis phenomenon of piezoelectric materials, modeling uncertainties of piezoelectric actuators, and external disturbance of the outside environment lead to control difficulties and strongly reduce the positioning accuracy of piezoelectric actuators. Based on the above reasons, a novel control design combined with feedback linearization and robust control concepts are proposed for dealing with the micrometer (μm) positioning problem of piezoelectric actuators.
    From the simulation results, it is obvious that our proposed control law yields the excellent control performance than the conventional control designs. Finally, this proposed method is practically performed for the verification of positioning performance. After the practical testing, the controlled piezoelectric actuator possesses a positioning accuracy of 1 μm

    摘 要 ii ABSTRACT iii 誌謝 iv List of Figures vii List of Tables x Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Literature Review 2 1-3 Objective 5 1-4 Structrue 6 Chapter 2 Modeling for Piezoelectric Actuator 8 2-1 Introduction of Piezoelectric Actuator 8 2-1-1 One-Dimension Piezoelectric Actuator 9 2-1-2 Driving Principle of Signal-Phase-Driven Piezoelectric Actuator 9 2-2 Hysteresis Phenomena of PZT Ceramic Element 10 2-3 Introduction of Bouc-Wen Model 12 2-3-1 BIBO Stable Verification of Bouc-Wen Model 13 2-3-2 Example 1 14 2-3-3 Example 2 15 2-4 Dynamic Model of Piezoelectric Actuator 16 2-5 Model Identification of Piezoelectric Actuator with PSO 19 Chapter 3 Controller Designs 21 3-1 Feedback Linearization Control Design 22 3-2 Robust Feedback Linearization Control Design 23 Chapter 4 Simulation Results 29 4-1 System Model without Disturbances 31 4-2 Control Performance Verification without Disturbance 32 4-3 System Model with Disturbances 42 4-4 Control Performance Verification with Disturbances 44 4-4-1 Control Performance of Situation 1 46 4-4-2 Control Performance of Situation 2 54 4-5 The Effect of Different Attenuation Level 62 Chapter 5 Experiments 65 5-1 The Characteristic of PZT 65 5-1-1 Measurement Equipment 65 5-1-2 Measurement of Response Frequency 66 5-1-3 Measurement of Vibration Mode 67 5-2 Control Design 68 5-2-1 Control Equipments 69 5-2-2 Arrangements of Overall Control and Sensing Platform 71 5-2-3 Practical Positioning Implementations and Verifications 74 Chapter 6 Conclusions 77 Reference 78

    [1] D.C. Jiles, and D.L. Atherton, “Theory of Ferromagnetic Hysteresis,” Journal of Magnetism and Materials, Vol. 61: 48-60, 1986.
    [2] M. Brokate, and J. Sprekels, “Hysteresis and Phase Transitions,” Springer Verlag, New York, 1996.
    [3] I.D. Mayergoyz, “Dynamic Preisach Model for Hysteresis,” IEEE Trans Magn, 24 (6), 1986.
    [4] GV Webb, DC Lagoudas, and AJ Kurdila, “Hysteresis Modeling of SMA Actuators for Control Application,” Journal of Intelligent Material Systems and Structure, 9: 432-448, 1998.
    [5] Klaus Kuhnen, “Modeling, Identification and Compensation of Complex Hysteresis Nonlinearities, a Modified Prandtl-Ishlinskii Approach,” European Journal of Control, Vol. 9, No.4 407-418, 2003.
    [6] MAO JianQin, and DING Haishan, “Intelligent Modeling and Control for Nonlinear Systems with Rate-Dependent Hysteresis,” Science in China Press, Vol. 52, No. 4 547-722, 2009.
    [7] Ram Venkataraman Iyer, Xiaobo Tan, and P.S. Krishnaprasad, “Approximate Inversion of the Preisach Hysteresis Operator with Application to Control of Smart Actuators,” IEEE Transactions on Automatic Control, Vol. 50, No.6, 2005.
    [8] Micky Rakotondrabe, “Bouc-Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators,” IEEE Transactions on Automatic Science and Engineering, Vol. 8, No. 2, 2011.
    [9] H.G. Xu, T. Ono, and M. Esashi, “Precise Motion Control of a Nanopositioning PZT Microstage Using Integrated Capacitive Displacement Sensors,” J. Micromech. Microeng., Vol. 16, No. 12, pp. 2747-2754, 2006.
    [10] F.-J. Lin, R.-J. Wai, K.-K. Shyu, and T.-M. Liu, “Recurrent Fuzzy Neural Network Control for Piezoelectric Ceramic Linear Ultrasonic Motor Drive,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, Vol.48, No. 4, pp. 900-913, 2001.
    [11] H.C. Liaw, B. Shirinzadeh, and J. Smith, “Sliding-Mode Enhanced Adaptive Motion Tracking Control of Piezoelectric Actuation Systems for Micro/Nano Manipulation,” IEEE Trans. Control Syst. Technol., Vol. 16, No.4, pp. 826-833, 2008.
    [12] Li Yangmin, and Xu Qingsong, “Adaptive Sliding Mode Control with Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator,” IEEE Trans. Control Syst. Technol., Vol. 18, No.4, 2010.
    [13] K. Otokawa, K. Takemura, and T. Maeno, “ A Multi-Degree of Freedom Ultrasonic Motor Using Single-Phase-Driven Vibrators,” Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 73, No. 2, pp. 577-582, 2007.
    [14] O. Vyshnevskyy, S. Kovalev, and W. Wischnewskiy, “A Novel, Single-Mode Piezoelectric Plate Actuator for Ultrasonic Linear Motors,” IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control, Vol. 52, No. 11, pp. 2047-2053, 2005.
    [15] Jyh-Da Wei, and Chuen-Tsai Sun, “Large Simulation of Hysteresis Systems Using a Piecewise Polynomial Function,” IEEE Signal Processing Letters, Vol. 9, No. 7, 2002.
    [16] Mohammed Ismail, Fayçal Ikhouane, and José Rodellar, “The Hysteresis Bouc-Wen Model, a Survey,” Arch Comput Methods Eng, 16: 161-188, 2009.
    [17] F Ikhouane, V Mañosa, and J Rodellar, “Dynamic Properties of the Hysteretic Bouc-Wen Model,” Systems & Control Letters 56, 197–205, 2007.
    [18] M. Jounaneh, and W. Guo, “Modeling of a Three-Layer Piezoelectric Bimorph Beam with Differential Model,” J. Microelectromech. Syst., Vol. 4, No. 4, pp. 230-237, 1995.
    [19] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization,” IEEE International Conference on Neural Networks, 1942-1948, 1995.
    [20] A. Stoorvogel, “The Control Problem: A State Space Approach,” Prentice-Hall, New York, 1992.
    [21] T. Basar, and P. Bernhard, “Optimal Control and Related Minimax Design Problem: A Dynamic Game Approach,” Berlin, 1991.
    [22] T.Basar, and G.J. Olsder, “Dynamic Noncooperative Game Theory,” Academic Press, London, 1982.
    [23] Xinkai Chen, and Takeshi Hisayama, “Adaptive Sliding-Mode Position Control for Piezo-Actuated Stage,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 11, 2008.
    [24] Sunan Huang, Kok Kiong Tan, and Tong Heng Lee, “Adaptive Sliding-Mode Control of Piezoelectric Actuators,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 9, 2009.
    [25] S. Nurung, K.C. Magsino, and I. Nikhamhang, “Force Estimation Using Piezoelectric Actuator with Adaptive Control,” IEEE ECTI-CON, Vol. 1, pp.350-353, 2009.
    [26] Yongxin Guo, Jianqin Mao, and Kemin Zhou, “Modeling and Control of Giant Magnetostrictive Actuator Based on Bouc-Wen Model,” ASCC, 2011.
    [27] Y. Cao, and B. Chen, “Integrated Inversion-Feedforward and PID-base-Sliding Mode-Control for Piezoelectric Actuators,” IEEE American Control Conference (ACC), 2012.
    [28] J.Y. Peng, and X.B. Chen, “Integrated PID-Based Sliding Mode State Estimation and Control for Piezoelectric Actuators,” IEEE/ASEM Transactions on Mechatronics, 2012.
    [29] Xu. Qingsong, “Adaptive Discrete-Time Sliding Mode Impedance Control of a Piezoelectric Microgripper,” IEEE Transactions on Robotics, Vol. 29, No. 3, 2013.

    無法下載圖示 校內:2018-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE