簡易檢索 / 詳目顯示

研究生: 江慧君
Chiang, Hui-Chun
論文名稱: 自行車用輪胎之靜態壓縮行為與動態滾動接觸反應的數值分析與實驗
Experimental and Numerical Studies of Quasi-static compression behavior and Dynamic Rolling Contact Responses for Pneumatic Bicycle Tires
指導教授: 鄭泗滄
Jenq, Syh-Tsang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 111
中文關鍵詞: 滾動與接觸分析自行車輪胎有限元素分析路面凸角(減速檔、減速丘)複合材料橡膠
外文關鍵詞: contact analysis, tires, FEM, Speed bump and hump obstacle, composite, rubber
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之研究目的主要在於先進複材輪胎的動態滾動行為及行經路面凸角之力學響應研究,探討自行車輪胎在動態滾動時的行為。使用古典基層板理論依據其各部分材料與角度上組成的差異,轉換成工程常數,計算出其材料性質,以此描述輪胎複雜的結構。由於輪胎表層胎面以及胎體部份,屬於純橡膠材料,由拉伸試驗中得到力與伸長量的曲線並且利用此曲線得到的Mooney-Rivlin模型的參數去描述而此一大變形之非線性彈性材料。透過前處理建構出輪胎的結構,使用商用有限元素軟體LS-DYNA模擬計算輪胎受一可移動壓盤壓縮並與實驗值做比較,觀察輪胎所受之正向接觸反力曲線,其模擬與實驗的結果能夠有相當一致的結果。除此之外,使用兩種不同車速,分別為10、20、30km/hr使輪胎於乾燥平坦路面上滾動,觀察速度大小不同及不同高度與長度之凸角對輪胎結構的受力分佈的影響。由於輪胎所受到外在之動靜態的負載相當多,經過輪胎壓縮的實驗與數值驗證後,本文在滾動模組中選擇路面凸角如減速檔(Speed bump)與減速丘(Speed hump)做更深入之探討,模擬自行車胎完成充氣與滾動行為後,與路面凸角接觸,觀察輪胎速度與凸角接觸作用後,輪胎表面與接觸反力的數值反應。
    由一開始的輪胎壓縮實驗與模擬比對,在受到一定的壓縮量後其接觸反力有相當一致的結果,在藉由有限元素軟體的模擬,藉此能提供可靠的數據去判斷輪胎的力學行為,且能透過本文之模擬成果希望能提供給工程人員參考並能減少所花費的實驗與時間成本,為本文主要之研究目的。

    The purpose of this work is to study the rolling contact response of inflated pneumatic radial bicycle tires with a half vertical car weight loaded initially. Tires were designed to roll over a specific 75mm hight speed bump and 100 mm height speed hump obstacle on a dry roadway at a prescribed incident speed. The dynamic interactive response between the road bump and tire are examined numerically. Tire structure contains the rubber tread and reinforcing composite layers (i.e., the inner layer, carcass, bead filler and bead wires). The Mooney-Rivlin constitute law was adopted to describe the large deformation and non-linear behavior of rubber material which be obtained from the experimental data of force and displacement curve. The classical laminated theory was used to model the mechanical response for the reinforcing composite layers. In the present study, the 26”x1.5” radial tires with the smooth pattern were chosen to study the dynamic contact rolling response when tires roll over the speed bump and speed hump obstacle on a dry pavement. Finite Element Commercial Codes – LS-DYNA were used to simulate the smooth pattern tire’s qusi-static response in order to compare the normal contact forces obtained from both FEM commercial codes and compressive test data. It reveals that both experiment data and LS-DYNA simulated normal contact forces for the wheel compressing on the compression device. Current LS-DYNA tire models for four tread patterns mentioned above were then used to simulate the complete process of the tire rolling over two kinds of prescribed obstacle. It is noted that tires were numerically inflated to 240 kPa and loaded with a half bicycle weight initially, and the tires were then accelerated from rest on a dry-flat pavement up to velocities of 10、20 and 30 km/hr. The tires were then in contact with a prescribed 75 mm height road bump and 100mm height road hump. The lateral contact force and the normal contact force of the above mentioned simulation velocities on tires with two tread patterns rolling over bump and hump were obtained and reported. Detailed simulated results were also reported.

    第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 4 1-3 研究目的 5 1-4 輪胎結構和專業用語簡介 6 1-5 有限元素應用在輪胎之文獻回顧 8 1-6 研究方法與研究流程 10 第二章 理論背景 18 2-1 橡膠之超彈性理論 18 2-2 簾布層之材料組成與座標規劃 20 2-2-1 簾布層材料 23 2-2-2 單層等效混合定律 (Rule of Mixtures) 23 2-2-3 古典積層板理論 24 2-3 Implicit 與 Explicit Method 27 2-3-1 Implicit數值方法之理論介紹 28 2-3-2 Explicit數值方法之理論介紹 32 2-3-3 LS-DYNA中Implicit與Explicit的使用技巧 33 第三章 輪胎結構及路面凸角之有限元素模型 41 3-1 輪胎結構之有限元素模型 41 3-2 輪胎光頭胎及直排胎之有限元素模型 42 3-3 簾布層、胎體與胎唇有限元素模型與元素選定 42 3-4 空氣層的有限元素模型建立方法與元素選定 43 3-5 輪框、花鼓、輻條、路面的有限元素模型建立方法與元素選定 43 3-6 路面凸角之有限元素模型 44 第四章 實驗與模擬驗證 55 4-1 實驗目的 55 4-2 輪胎材料性質測定與設備介紹 55 4-2-1 規範介紹 55 4-2-2 實驗設備及流程 56 4-2-3 拉伸試驗結果 58 4-3 擬靜態壓縮實驗與設備介紹 58 4-3-1 實驗設備及流程 58 4-4 模擬真實物理環境狀況及結果 60 4-4-1 模擬物理環境假設 60 4-4-2 擬靜態模擬結果 61 4-5 模擬數據資料驗證 62 4-5-1 反接觸力與壓縮量 62 4-5-2下壓接觸胎面顏料 62 4-5-3 結果與討論 63 第五章 輪胎之動態滾動接觸分析數值研究 75 5-1 定義輪胎滾動模組之運動作用時間 75 5-2 輪胎滾動之物理環境與模擬設定 76 5-3 動態滾動模組於乾燥平坦路面之力學響應 77 5-4應用動態滾動模組於路面凸角之力學響應 80 5-5 模擬結果探討 84 第六章 結論與未來展望 104 6-1 結果與討論 104 6-2 未來展望 106 參考文獻 107 自 述 111

    [1] 許正和、邱創勳著,台灣自行車產業發展史-躍上頂峰的台灣鐵馬,國立科學工藝博物館。
    [2] http://tie.tier.org.tw/ 台經院產經資料庫。
    [3] 劉弘雁、陳美玲等人,2006汽、機、自行車產業現況與趨勢分析,工業技術研究院,產業經濟與資訊服務中心。
    [4] http://www.tbnet.org.tw/ 自行車暨健康科技工業研究發展中心
    [5] 中華民國國家標準CNS 7135 D2087, 汽車用輕合金盤型輪圈, 1995.
    [6] Andrew D. Hartz, “Finite Element Analysis of the Classic Bicycle Wheel”, Senior Mechanical Engineer.
    [7] M H R Ghoreishy, “Steady State Rolling Analysis of a Radial Tyre:Comparison with Expermental Results” , Proceedings of the Institution of Mechanical Engineers -- Part D -- Journal of Automobile Engineering,Vol.220, No.6, pp.713-721, 2006.
    [8] Jenq, S. T., Yucheng Ting, S. M. Liang, David Lin and Mike Shih “Quasi-static Compression and Rolling Contact Analysis of MAXXIS VICTRA MA-Z1 Tire on Dry Roadway”, International Journal of Modern Physics B, Vol. 22, No. 9, pp.1531-1537, 2008.
    [9] Y. Nakajima, E. seta, T. Kamegawa and H. ogawa, “Hydroplaning Analysis by FEM and FVM:Effect of Tire Rolling and Tire Pattern on Hydroplaning”, International Journal of Automotive Technolngy, Vol.1, No.1, pp.26~34, 2000.
    [10] Syh-Tsang Jenq and Yuen-Sheng Chiu, 2009, “Hydroplaning Analysis for Tire Rolling over Water Film with Various Thicknesses Using the LS-DYNA Fluid-Structure Interactive Scheme,” Computers, Materials & Continua (CMC), v. 11(1), pp. 33-58. (SCI, EI)
    [11] Jenq, S. T. and J. J. Mo, “Ballistic impact response for two-step braided three-dimensional textile composite”, AIAA Journal, Vol.34, No.2, pp.375-384, 1996.
    [12] Jenq, S. T., J. T. Kuo and L. T. Sheu, “Ballistic impact response of 3-D four-step braided glass/epoxy composites”, Key Engineering Materials, Vol. 141-143, in Part 1: Impact Response and Dynamic Failure of Composites and Laminate Materials, pp.349-366, 1998.
    [13] C. J. Burgoyne and R. Dilmaghanian , “Bicycle Wheel as Prestressed Structure”, Journal of Engineering Mechanics Volume 119, Issue 3, pp. 439-455 (March 1993).
    [14] T. J. Chung, Continuum Mechanics, Prentice Hall, Englewood Cliffs, New Jersey, 1988. (pp.140-142)
    [15] C. Truesdell, Continuum Mechanics, Gordon and Breach, New York, 1965. (pp.379-397)
    [16] R. W. Ogden, “Recent Advances in the phenomenological theory of rubber elasticity,” Rubber Chemistry and technology, Vol.59,No.3, pp.361~382, 1986.
    [17] Guo Qiang Liu et al., “The Computer Simulation Rubber Components and Composites”, Composites Science and Technology, Vol.36, pp.267-281, 1989.
    [18] T. J. Chung, Continuum Mechanics, Prentice Hall, Englewood Cliffs, New Jersey, 1988. (pp.104-106)
    [19] 邱元升,車用輪胎之動態滾動接觸行為與胎紋排水性研究,國立成功大學碩士論文。
    [20] Ronald F. Gibson, Principles of Composite Material Mechanics, Second Edition, Taylor & Francis Group , LLC , Boca Raton, 2007. (pp.91-107)
    [21] Herbert Reismann, Peter S. Pawlik, Elasticity Theory and Applications, John Wiley, New York, 1980. (pp.128-135)
    [22] Jagmohan L. Humar, Dynamics of structures, Second Edition, Lisse ;A.A. Balkema Publishers,c2002.Exton, PA(pp.408-412)
    [23] Germund Dahlquist et al., Numerical Method, Prentice Hall, Englewood Cliffs, New Jersey, 1974. (pp.222-223)
    [24] 勢流科技股份有限公司, 結構分析軟體LS-DYNA技術講座Implicit/Explicit, 2006. (pp.38-40)
    [25] USER MANUAL, Eta/FEM-PC Version 27, 2004 , Engineering Tech. Asso., Inc., Troy, Mi, USA
    [26] 陳高村、林清芬,道路減速丘設施振動安全衝擊評估之研究,八十九年道路交通安全與執法研討會。
    [27] CNS373自行車用橡膠外胎檢驗法,中華民國國家標準局。
    [28] CNS3553硫化橡膠拉伸試驗法,中華民國國家標準局。
    [29] 丁羽辰,“車用先進輪胎之擬靜態壓縮實驗及動態滾動反應之數值研究”,國立成功大學航空太空工程研究所碩士論文, 2006.
    [30] J. O. Hallquist, LS-DYNA Keyword User’s Manual, Livermore, v.971, pp.11.36-11.38 (Software Technology Corp., Livermore, CA, 2007).

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE