| 研究生: |
林修群 Lin, Siou-Cyun |
|---|---|
| 論文名稱: |
固溶化處理對4384鋁合金微觀組織與拉伸性質之影響 Effects of Solid Solution Treatment on Microstructure and Tensile Properties of Rotary Swaged 4384 Aluminum Alloy |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 陳立輝 Chen, Li-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | Al-Si合金 、旋鍛 、固溶化處理 |
| 外文關鍵詞: | Al-Si alloy, Rotary swaging, Solid solution treatment |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
4384鋁合金含有近共晶組成的Si含量,而大量在α-Al基地中晶出的硬質相使4384鋁合金有較低的熱膨脹係數、良好的耐磨耗性質及高溫強度,於傳動系統的引擎中被廣泛地使用。但大量的硬質相存在於α-Al基地中也造成材料的延性表現不佳,加工成形性受限。
本研究選取旋鍛棒材作為原始材料並以未經旋鍛之熱擠型棒材做為對比材,接著利用480℃固溶化處理改質,提升4384鋁合金之延性,並以工業界常用之415℃退火處理作為比對的熱處理法。利用OM、SEM、XRD、HRF硬度測試、奈米壓痕測試與拉伸測試來探討旋鍛及固溶化處理對4384鋁合金其微觀組織及拉伸性質之影響。
實驗結果顯示,4384鋁合金中除了有大量的共晶Si,也有δ相與Q相存在於α-Al基地中。共晶Si經旋鍛後被打散而更細密。退火處理使共晶Si邊緣圓鈍化,而固溶化處理除了圓鈍化效應之外還將共晶Si固溶回α-Al基地中使共晶Si尺寸、面積分率與顆粒密度下降。
退火處理及固溶化處理皆能改善延性。退火處理消除加工硬化效應而軟化α-Al基地,而固溶化處理除了消除加工硬化效應之外,過飽和固溶與後續自然時效析出也對α-Al基地之變形阻抗有所貢獻,較能阻止裂紋傳播。以上結果顯示,經旋鍛與固溶化處理之4384鋁合金對於裂紋成長之阻抗較高,故均勻變形量表現最為優異,且根據計算加工硬化率的結果,加工硬化率最高者為經固溶化處理之旋鍛4384鋁合金。選擇均勻變形量與加工硬化率皆有最佳表現的固溶化處理之旋鍛4384鋁合金作為加工成形使用最為合適。
4384 aluminum alloy with near-eutectic Si content is widely used in engine. Many hard phases in α-Al matrix cause low ductility of 4384 aluminum. In this study, rotary swaging and solid solution were chosen to improve formability by improving ductility and work hardening rate. We chose the rotary swaged 4384 aluminum alloy bar to compare with extrusion bar (non-rotary swaged). Solid solution treatment was used to improve formability of these two bars and compare with annealing treatment which was widely used in industry. OM, SEM, XRD, Nano indenter and tensile test were utilized to investigate microstructure and tensile properties.
From the experimental results, there are not only many eutectic Si but also δ phases and Q phases existing in 4384 aluminum alloy. After rotary swaging, eutectic Si was smashed. Annealing treatment made the edge of eutectic Si be rounded. Solid solution treatment made not only eutectic Si be rounded but also reduce the size and area fraction decrease.
Annealing treatment can remove work hardening effect. Expect removing work hardening effect, solid solution treatment makes α-Al matrix supersaturated state and precipitation can inhibit cracks growth.
Results shows that 4384 aluminum alloy during rotary swaging and solid solution treatment has the best uniform elongation and work hardening rate. Rotary swaged 4384 aluminum alloy during solid solution treatment is the most suitable choice for forming.
1. Hai Li, Qingzhong Mao, ZhixiuWang, Fenfen Miao, Bijun Fang, Ziqiao Zheng, Enhancing mechanical properties of Al–Mg–Si–Cu sheets by solution treatment substituting for recrystallization annealing before the final cold-rolling. Materials Science and Engineering: A, 2015. 620: p. 204-212.
2. E.R. Wang, X.D. Hui, G.L. Chen, and G.L. Chen, Eutectic Al–Si–Cu–Fe–Mn alloys with enhanced mechanical properties at room and elevated temperature. Materials & Design, 2011. 32(8-9): p. 4333-4340.
3. Edward H. Kottcamp, Jr., John G. Simon, William P. Koster, Edward L. Langer, Leo G. Thompson, Alloy Phase Diagrams. ASM Handbook, 1992.
4. Muzaffer Zeren, M., The effect of heat-treatment on aluminum-based piston alloys. Materials & Design, 2007. 28(9): p. 2511-2517.
5. Jinguo Qiao, Xiangfa Liu, Xiangjun Liu, Xiufang Bian, Relationship between microstructures and contents of Ca/P in near-eutectic Al–Si piston alloys. Materials Letters, 2005. 59(14-15): p. 1790-1794.
6. R.X. Li, , R.D. Li, Y.H. Zhao, L.Z. He, C.X. Li, H.R. Guan, Z.Q. Hu, Age-hardening behavior of cast Al–Si base alloy. Materials Letters, 2004. 58(15): p. 2096-2101.
7. Mustafa A. Abdulstaar, Mansour Mhaede, Manfred Wollmann, Lothar Wagner, Fatigue behaviour of commercially pure aluminium processed by rotary swaging. Journal of Materials Science, 2013. 49(3): p. 1138-1143.
8. Hsu-Chi Chuang, Truan-Sheng Lui ,Li-Hui Chen, Characteristics and Effects of Particle Morphology and Tensile Ductility Resulting from FSP of Al-Si-Cu-Ni Casting and Forging Piston. Materials Transactions, 2013. 54(8): p. 1373-1380.
9. A.R. Farkoosh, M. Javidani, M. Hoseini, D. Larouche, M. Pekguleryuz, Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: Thermodynamic assessment and experimental investigation for alloy design. Journal of Alloys and Compounds, 2013. 551: p. 596-606.
10. Yang Yang, Yunguo Li, Wuying Wu, Degang Zhao, Xiangfa Liu, Evolution of nickel-rich phases in Al–Si–Cu–Ni–Mg piston alloys with different Cu additions. Materials & Design, 2012. 33: p. 220-225.
11. E.R. Wang, X.D. Hui, S.S. Wang, Y.F. Zhao, G.L. Chen, Improved mechanical properties in cast Al–Si alloys by combined alloying of Fe and Cu. Materials Science and Engineering: A, 2010. 527(29-30): p. 7878-7884.
12. Z. Ma, A.M. Samuel, F.H. Samuela, H.W. Doty, S. Valtierra, A study of tensile properties in Al–Si–Cu and Al–Si–Mg alloys: Effect of β-iron intermetallics and porosity. Materials Science and Engineering: A, 2008. 490(1-2): p. 36-51.
13. N.A. Belov, D.G. Eskin, N.N. Avxentieva, Constituent phase diagrams of the Al–Cu–Fe–Mg–Ni–Si system and their application to the analysis of aluminium piston alloys. Acta Materialia, 2005. 53(17): p. 4709-4722.
14. F. Toptan, A.C. Alves, I. Kerti, E. Ariza, L.A. Rocha, Corrosion and tribocorrosion behaviour of Al–Si–Cu–Mg alloy and its composites reinforced with B4C particles in 0.05M NaCl solution. Wear, 2013. 306(1-2): p. 27-35.
15. Małgorzata Warmuzek, Chemical composition of the Ni-containing intermetallic phases in the multicomponent Al alloys. Journal of Alloys and Compounds, 2014. 604: p. 245-252.
16. Ding Ke, Liao Hengcheng, Jin Qiumin, Tang Yun, Effect of hot extrusion on mechanical properties and microstructure of near eutectic Al–12.0%Si–0.2%Mg alloy. Materials Science and Engineering: A, 2010. 527(26): p. 6887-6892.
17. Lei Deng, Xinyun Wang, Juchen Xia, Jianjun Li, Effect of isothermal extrusion parameters on mechanical properties of Al–Si eutectic alloy. Materials Science and Engineering: A, 2011. 528(21): p. 6504-6509.
18. Liu Fang, Yu Fuxiao, Zhao Dazhi, Zuo Liang, Microstructure and mechanical properties of an Al–12.7Si–0.7Mg alloy processed by extrusion and heat treatment. Materials Science and Engineering: A, 2011. 528(10-11): p. 3786-3790.
19. Seong-Joo Lim, Ho-Joon Choi, Chi-Hwan Lee, Forming characteristics of tubular product through the rotary swaging process. Journal of Materials Processing Technology, 2009. 209(1): p. 283-288.
20. K. Osakada, Y. Goto, M. Shiraishi, T. Okada, Shape Control in CNC Rotary Swaging Machine. CIRP Annals - Manufacturing Technology, 1992. 41(1): p. 285-288.
21. Yong Li, Jinlong Huang, Guangwen Huang, Wei Wang, Jucong Chen, Zhixin Zeng, Comparison of radial forging between the two- and three-split dies of a thin-walled copper tube during tube sinking. Materials & Design, 2014. 56: p. 822-832.
22. T. Kuboki, Y. Ohde, M. Murata, Improvement of forming limit by rotary nosing with a relieved die. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2008. 222(2): p. 245-253.
23. Li Rong, Zuoren Nie, Tieyong Zuo, 3D finite element modeling of cogging-down rotary swaging of pure magnesium square billet—Revealing the effect of high-frequency pulse stroking. Materials Science and Engineering: A, 2007. 464(1-2): p. 28-37.
24. Rong Li, Nie Zuo-ren, Zuo Tie-yong, Effects of reduction of diameter on microstructure and surface roughness of rotary swaged magnesium by FEA. Trans. Nonferrous Met. Soc. China, 2008. 18: p. 263-268.
25. Daniel Rippel, Eric Moumi, Michael Lütjen, Bernd Scholz-Reiter, Bernd Kuhfuß, Application of Stochastic Regression for the Configuration of Microrotary Swaging Processes. Mathematical Problems in Engineering, 2014. 2014: p. 1-12.
26. Mustafa Abdulstaar, Mansour Mhaede, Manfred Wollmann, Lothar Wagner, Investigating the effects of bulk and surface severe plastic deformation on the fatigue, corrosion behaviour and corrosion fatigue of AA5083. Surface and Coatings Technology, 2014. 254: p. 244-251.
27. Przemyslaw Szczygiel, Hans Jorgen Roven, Oddvin Reiso, Annealing of Al–Si alloys after equal-channel angular pressing. Materials Science and Engineering: A, 2008. 493(1-2): p. 202-206.
28. Mustafa A. Abdulstaar, Ehab A. El-Danaf, Nurhadi S. Waluyo, Lothar Wagner, Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties. Materials Science and Engineering: A, 2013. 565: p. 351-358.
校內:2020-08-11公開