簡易檢索 / 詳目顯示

研究生: 翁崇傑
Wong, Chong-Jie
論文名稱: 紊流流體於三維斜角肋條渠道之數值模擬與最佳化
Numerical simulation and optimization of turbulent fluids in a three dimensional angled ribbed channel
指導教授: 楊玉姿
Yang, Yue-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 118
中文關鍵詞: 數值模擬紊流斜角肋條渠道基因演算法最佳化
外文關鍵詞: Numerical simulation, Turbulent flow, Angled ribbed channel, Genetic algorithm, Optimization
相關次數: 點閱:134下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討紊流蒸氣於等熱通量三維斜角肋條渠道內強制對流之數值計算。應用控制體積法求解紊流強制對流橢圓、耦合、穩態之三維統御偏微分方程式。統御方程式則使用標準k-ε紊流模型求解。研究參數包含斜角肋條高度(0.0475≤e⁄D≤0.1425),斜角肋條間距(0.475≤p⁄D≤1.425),斜角肋條角度(30°≤θ≤90°)以及雷諾數(30000≤Re≤70000)。
    數值結果先與參考文獻做數值驗證,最大誤差在3%內。文中探討雷諾數(Re)、肋條高度(e/D)、肋條間距(p/D)、斜角肋條角度( ),對於摩擦因子以及平均紐賽數之影響。數值結果顯示,熱傳效應的提升皆伴隨著有較大之摩擦因子,且摩擦因子最小及最大值分別出現在θ=30°及θ=60°。並進一步得到在不同位置的三個切平面之速度向量、溫度及紊流動能分布圖,來說明其熱傳特性。
    此外,於數值驗證後,使用反應曲面法(RSM)結合計算流體力學(CFD),來進行本文之數值模擬最佳化。本文之目標函數定義為熱性能係數E,利用迴歸分析得到其與三種設計參數即斜角肋條高度、斜角肋條間距與斜角肋條角度間之關係式,並以基因演算法(GA)求得於不同雷諾數下之最佳斜角肋條幾何外型。由迴歸分析所得性能係數關係式與計算流體力學之結果相當接近,其誤差約為0.25%。數值最佳化結果顯示,於此斜角肋條渠道中,其目標函數E約有20%的增益。

    In this study, numerical simulations of turbulent steam forced convection in a three-dimensional angled ribbed channel with constant heat flux are investigated. The elliptical, coupled, steady-state, three-dimensional governing partial differential equations for turbulent forced convection are solved numerically using the finite volume approach. The parameters studied include angled rib height ratios, angled rib pitch ratios, rib angles and Reynolds numbers.
    The effects of Reynolds number, angled rib height ratio, angled rib pitch ratio, and rib angle on the friction factor ratio and averaged Nusselt number are investigated. Numerical results show that the increase in heat transfer is accompanied by an increase in the friction factor ratio of the steam flow.
    In addition, after the validation of the numerical results, the numerical optimization of this problem is also presented by using response surface methodology (RSM) coupled computational fluid dynamic (CFD). The objective function E which is defined as thermal performance factor has developed correlation functions with three design parameters (e/D, p/D and θ) which is given by regression analysis, and obtained optimal geometric shape of angled rib at different Reynolds number by genetic algorithms (GA). The predicted optimal performance factor E (e/D = 0.1425 , p/D = 0.475 , θ = 30° , Re = 30,000) of regression function is closely agreed with those from the CFD computational results within 0.25% difference. The numerical optimization indicates that the enhancement of the objective function E can achieve 20% in this angled ribbed channel.

    摘要 I Extended Abstract III 致謝 VI 目錄 VII 表目錄 X 圖目錄 XI 符號 XVII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 本文探討之主題與方法 7 第二章 理論分析 9 2-1 空間流場解析 9 2-2 紊流模型 12 2-2-1 k-ε紊流模型 12 2-2-2 牆函數 (wall function) 14 2-3 邊界條件 19 2-4 參數定義 20 第三章 數值方法 25 3-1 概述 25 3-2 格點位置之配置 27 3-3 之差分方程式 28 3-4 u、v、w動量方程式之差分方程式 32 3-4-1 壓力修正方程式 32 3-5 差分方程式之解法 35 3-6 收斂條件 36 第四章 最佳化設計 41 4-1 概述 41 4-2 反應曲面法 42 4-3 迴歸分析 43 4-4 基因演算法 44 4-4-1 適應度 45 4-4-2 基本基因演算法算子 46 4-4-3 終止條件 50 第五章 結果與討論 56 5-1 網格獨立測試及驗證 57 5-2 流場特性分析 58 5-2-1 速度向量 59 5-2-2 紊流動能 60 5-2-3 摩擦因子 61 5-3 熱場特性分析 62 5-3-1 溫度分布 62 5-3-2 平均紐賽數 64 5-4 熱性能分析 65 5-5 反應曲面法與基因演算法之最佳化 66 第六章 結論與建議 109 6-1 結論 109 6-2 建議 110 參考文獻 111

    [1] L. Shui, J. Gao, X. Shi, J. Liu, Effect of duct aspect ratio on heat transfer and friction in steam-cooled ducts with 60° angled rib turbulators. Exper. Therm. Fluid Sci. 49 (2013) 123-134.
    [2] J. C. Han, L. R. Glicksman, W. M. Rohsenow, An investigation of heat transfer and friction for rib-Roughened surfaces, Int. J. Heat Mass Transf. 21, no. 8, (1978) 1143-1156.
    [3] J. C. Han, J. S. Park, Developing heat transfer in rectangular channels with rib turbulators, Int. J. Heat Mass Transf. 31 (1988) 183–195.
    [4] J. C. Han, Heat transfer and friction characteristics in rectangular channels with rib turbulators, J. Heat Transf. 110 (1988) 321–328.
    [5] J. C. Han, S. Ou, J. S. Park, C. K. Lei, Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators, Int. J. Heat Mass Transf. 32 (1989) 1619–1630.
    [6] G. Rau, M. Cakan, D. Moeller, T. Arts, The effect of periodic ribs on the local aerodynamic and heat transfer performance of a triangular cooling channel, J. Turbomach. 120 (1998) 368–375.
    [7] S. W. Chang, T. M. Liou, W. C. Juan, Influence of channel height on heat transfer augmentation in rectangular channels with two opposite rib-roughened walls, Int. J. Heat Mass Transf. 48 (2005) 2806-2813.
    [8] S. Lau, R. McMillin, J. C. Han, Heat transfer characteristics of turbulent flow in a square channel with angled discrete ribs, ASME J. Turbomach. 113 (1991) 367–374.
    [9] G. Tanda, Heat transfer in rectangular channels with transverse and V-shaped broken ribs, Int. J. Heat Mass Transf. 47 (2004) 229-243.
    [10] Y. Zhang, W. Gu, J. C. Han, Heat transfer and friction in rectangular channels with ribbed or ribbed-grooved walls, ASME J. Heat Transf. 116 (1994) 58–65.
    [11] E. Y. Choi, Y. D. Choi, W. S. Lee, J. T. Chung, J. S. Kwak, Heat transfer augmentation using a rib–dimple compound cooling technique, Appl. Therm. Eng. 51 (2013) 435-441.
    [12] T. M. Liou, and J. J. Hwang, Turbulent Heat Transfer Augmentation and Friction in Periodic Fully Developed Channel Flows, Journal of heat transfer, 114, no. 1 (1992) 56-64.
    [13] C. Herman, and E. Kang, Comparative evaluation of three heat transfer enhancement strategies in a grooved channel, Heat Mass Transf. 37, no. 6 (2011) 563-575.
    [14] S. Eiamsa-ard, P. Promvonge, Thermal characteristics of turbulent rib-grooved channel flows, Int. Commun. Heat Mass Transf. 36 (2009) 705-711.
    [15] A. S. B. SundÉn, Numerical simulation of turbulent convective heat transfer in square ribbed ducts, Numer. Heat Transf. Part A: Appl. 38 (2000) 67-88.
    [16] A. Ooi, G. Iaccarino, P. A. Durbin, Reynolds averaged simulation of flow and heat transfer in ribbed ducts, Int. J. Heat Fluid Flow 23, no. 6 (2002) 750-757.
    [17] S. Eiamsa-ard, P. Promvonge, Numerical study on heat transfer of turbulent channel flow over periodic grooves, Int. Commun. Heat Mass Transf. 35 (2008) 844-852.
    [18] G. Xie, S. Zheng, W. Zhang, B. Sundén, A numerical study of flow structure and heat transfer in a square channel with ribs combined downstream half-size or same-size ribs, Appl. Therm. Eng. 61 (2013) 289-300.
    [19] J. C. Corman, H gas turbine combined cycle technology and development status, in: Proceeding of the International Gas Turbine and Aeroengine Congress & Exhibition, ASME Turbo Expo 96, Birmingham, UK, (1996), Paper No. 96-GT-11.
    [20] H. Nomoto, A. Koga, S. Ito, Y. Fukuyama, F. Otomo, S. Shibuya, M. Sato, Y. Kobayashi, H. Matsuzaki, The advanced cooling technology for the 1500°C class gas turbines: steam-cooled vanes and air-cooled blades, ASME J. Eng. Gas Turbines Power 119 (1997) 624–632.
    [21] U. Kruger, K. Kusterer, G. Lang, H. Rosch, D. Bohn, E. Martens, Analysis of the influence of coolant steam conditions on the cooling efficiency of a steam cooled vane using the conjugate calculation technique, in: Proceedings of ASME Turbo Expo 2001, New Orleans, Louisiana, USA, (2001), Paper no. 2001-GT-0166.
    [22] D. Bohn, A. Wolff, M. Wolff, K. Kusterer, Experimental and numerical investigation of a steam-cooled vane, in: proceedings of ASME Turbo Expo (2002), Amsterdam, The Netherlands, Paper no. 2002-GT-30210.
    [23] B. Facchini, G. Ferrara, L. Innocenti, Blade cooling improvement for heavy duty gas turbine: the air coolant temperature reduction and the introduction of steam and mixed steam/air cooling, Int. J. Therm. Sci. 39 (2000) 74–84.
    [24] Y. S. H. Najjar, A. S. Alghamdi, M. H. Al-Beirutty, Comparative performance of combined gas turbine systems under three different blade cooling schemes, Appl. Therm. Eng. 24 (2004) 1919-1934.
    [25] Onkar Singh, B. N. Prasad, Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle, Appl. Therm. Eng. 28 (2008) 2315-2326.
    [26] L.Q. Shui, J.M. Gao, L. Xu, X.J. Wang, Numerical investigation of heat transfer and flow characteristics in a steam-cooled square ribbed duct, in: Proceedings of ASME Turbo Expo 2010, Glasgow, UK, Paper no. 2010-GT-22407.
    [27] J. Liu, J. Gao, T. Gao, Forced convection heat transfer of steam in a square ribbed channel, J. Mechanical Science and Tech. 26 (2012) 1291-1298.
    [28] Mohsin, S., Maqbool, A., and Khan, W.A., Optimization of cylindrical pin-fin heat sinks using genetic algorithms, Comp. Packag. Technol., IEEE Transactions 32, no. 1 (2009) 44-52.
    [29] K. T. Chiang, F. P. Chang, Application of response surface methodology in the parametric optimization of a pin-fin type heat sink, Int. Commun. Heat Mass Transf. 33 (2006) 836-845.
    [30] D Gupta, S. Solanki, J. Saini, Thermohydraulic performance of solar air heaters with roughened absorber plates, Solar Energy 61, no. 1 (1997) 33-42.
    [31] L. Valdevit, A. Pantano, H. A. Stone, A. G. Evans, Optimal active cooling performance of metallic sandwich panels with prismatic cores, Int. J. Heat Mass Transf. 49 (2006) 3819-3830.
    [32] F. Pettersson, J. Söderman, Design of robust heat recovery systems in paper machines, Chem. Eng. Process.: Process Intensification 46, (2007) 910-917.
    [33] K. Y. Kim, D. Y. Shin, Optimization of a staggered dimpled surface in a cooling channel using Kriging model, Int. J. Therm. Sci. 47 (2008) 1464-1472.
    [34] H. M. Kim, M. A. Moon, K. Y. Kim, Multi-objective optimization of a cooling channel with staggered elliptic dimples, Energy 36 (2011) 3419-3428.
    [35] Y. Wang, Y. L. He, D. H. Mei, W. Q. Tao, Optimization design of slotted fin by numerical simulation coupled with genetic algorithm. Appl. Energy 88 (2011) 4441-4450.
    [36] J. D. Bagley, The behavior of adaptive systems which employ genetic and correlation algorithms, University of Michigan, 1967.
    [37] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence: U Michigan Press, 1975.
    [38] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning: Addison-Wesley Reading Menlo Park, 1989.
    [39] L. Davis, Handbook of Genetic Algorithms: Van Nostrand Reinhold New York, 1991.
    [40] J. R. Koza, Genetic Programming: On the Programming of computers by means of natural selection: MIT press, 1992.
    [41] I. Ozkol, G. Komurgoz, Determination of the optimum geometry of the heat exchanger body via a genetic algorithm, Numer. Heat Transf., Part A: Applications 48 (2005) 283-296.
    [42] G. Fabbri, A genetic algorithm for fin profile optimization, Int. J. Heat Mass Transf. 40, no. 9 (1997) 2165-2172.
    [43] B. E Launder, D. B. Spalding, Lectures in Mathematical Models of Turbulence, Academic press, 1972.
    [44] B. E Launder, D. B. Spalding, The numerical computation of turbulent flows, Computer methods Appl. Mech. Eng. 3, no. 2 (1974) 269-289.
    [45] M. Serag-Eldin, D. B. Spalding, Computations of three dimensional gas turbine combustion chamber flows, J. Eng. Power, 101, no. 3, (1979) 326-336.
    [46] C. L. V. Jayatilleke, The influence of prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer, Prog. Heat Mass Transf. 1 (1969) 193-329.
    [47] S. E. Kim, D. Choudhury, A near-wall treatment using wall functions sensitized to pressure gradient, Separ. complex flows, 217 (1995) 273-280.
    [48] F. W. Dittus, L. M. K. Boelter, Heat transfer in automobile radiators of the tubular type, Univ. California Pub. Eng, 2 (1930) 443-461.
    [49] S. J. Kline, F. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1953) 3–8.
    [50] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, New York: McGraw-Hill, 1980.
    [51] S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transf. 15, no. 10 (1972) 1787-1806.
    [52] G. E. Box, and K. Wilson, On the Experimental Attainment of Optimum Conditions, Journal of the Royal Statistical Society. Series B (Methodological). 13, no. 1 (1951) 1-45.
    [53] J. Holland, Genetic algorithms and the optimal allocations of trials, SIAM Journal of Computing, 2, no.2 (1973) 88-105.

    下載圖示 校內:2017-07-29公開
    校外:2017-07-29公開
    QR CODE