簡易檢索 / 詳目顯示

研究生: 許伯勳
Hsu, Bo-Hsun
論文名稱: 金鍺共晶銲料與銅基材之界面反應及金-銅-鍺三元系統之相平衡
Interfacial reactions between Au-Ge eutectic solders and Cu substrates and phase equilibria of the Au-Cu-Ge ternary system
指導教授: 林士剛
Lin, Shih-Kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 94
中文關鍵詞: 高溫銲料金鍺共晶合金固晶材料界面反應相平衡
外文關鍵詞: High temperature Pb-free solders, Au-Ge eutectic solder, die attachment, interfacial reaction, phase equilibria
相關次數: 點閱:157下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化矽等高溫電子元件具有高溫穩定性,可用於地底探勘、電動車與航太科技等高功率嚴苛環境中。高鉛合金之物化性質良好,傳統上常用於高溫電子元件之固晶材料,然而鉛對人體與環境有害,歐美日等國紛紛立法禁止含鉛之電子產品,雖然目前因為仍無可靠的替代材料,高鉛銲料得以暫獲豁免,但開發高溫無鉛銲料的研究需要立即性的投入。金鍺合金具有良好電、熱性質,其共晶點達361 oC,可與高溫電子元件相匹配,為極具潛力的高溫無鉛銲料,而銅為工業中常見的基材材料,金鍺合金與銅基材之間的界面反應顯得更為重要。本研究以反應偶實驗方法探討金鍺共晶合金與與銅基材在400 oC下之界面反應,以模擬固晶製程中的焊接過程,測定界面生成相的種類與觀察其型態,並提出界面反應與反應相成長的機制。於此反應中總共有三個不同的相生成,為F.C.C.-(Au, Cu, Ge)、ζ相以及位於ζ/Cu界面處之X相。同時為了鑑定生成相在相圖上的位置,對於Au-Cu-Ge在400 OC下之等溫橫截面圖進行SEM影像觀察、EPMA成分相鑑定以及XRD結構分析。同時觀察金鍺合金與銅基材在300 OC之下之固固界面反應。

    Silicon carbide (SiC) has superior physical properties, low power loss, and high stability at high temperatures, so the SiC-based devices are commonly used in high power applications and under harsh environments, such as aerospace and oil-drilling. Conventionally Pb-Sn alloys containing 85 – 97 wt. % Pb, so-called “high-Pb solders”, are used as die attach solders in SiC-based electronics. However, Pb is proven to be harmful to the environment and human health. As the result, the eutectic and near-eutectic Pb-Sn alloys have been banned by the RoHS from the European Union (EU) and other countries worldwide. Despite the neural toxicity of Pb and the higher Pb contents in the “high-Pb solders”, currently there is no high temperature Pb-free alternative for the industry and “high-Pb solders” are temporarily exempted from the regulations. The eutectic point of the Au-Ge system at 361OC is higher than the liquidus temperatures of the high-Pb solders and thus the eutectic Au-Ge alloy can fulfill the requirement of SiC-based devices at high operation temperatures. Moreover, the eutectic Au-Ge alloy is recently reported to be with good wettability, electrical performance, and mechanical properties. Therefore, the eutectic Au-Ge alloy is considered to be one of the most promising Pb-free die attach materials for high temperature and high power applications. In the study, we examined the soldering reactions between eutectic Au-Ge alloy and Cu substrate. The Au-12Ge/Cu reaction couples are prepared and annealed at 400 OC under vacuum for various predetermined lengths of time. The interfacial morphologies as well as the compositions of the intermetallic compounds (IMCs) formed at the joints were analyzed with optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and electron probe microanalysis (EPMA), respectively. At initial stage of the reactions, a scallop-type ternary FCC solid solution formed at on the top on the Cu substrate surface. The FCC solid solution was identified as a ternary extension of the F.C.C.-(Au, Cu, Ge) continuous solid solution from the Au-Cu binary system. Following the formation and growth of the F.C.C.-(Au, Cu, Ge) phase, a planar ζ phase formed between Cu substrate and F.C.C.-(Au, Cu, Ge) phase and thus the Cu/liquid couple became Liquid/F.C.C.-(Au, Cu, Ge)/ζ/Cu. After longer annealing time, the X phase form between ζ/Cu, and the ζ was differentiate to two parts. In order to identify those IMCs formed in the reaction, the isothermal section of Au-Cu-Ge system at 400 OC is proposed. In the third part of this thesis, Au-12Ge/Cu solid/solid reaction couples are prepared and annealed at 300 OC under vacuum for various predetermined lengths of time. The interfacial morphologies as well as the compositions of the IMCs formed at the joints were analyzed.

    摘要 I Abstract II 目錄 VI 圖目錄 VIII 第1章 前言 1 第2章 文獻回顧 3 2-1 電子構裝 3 2-2 界面反應 4 2-2-1 相平衡 4 2-2-2 動力學行為 5 2-3 無鉛銲料 8 2-3-1 鋅基高溫銲料系統 10 2-3-2 Bi-Ag高溫銲料系統 11 2-3-3 Au-Sn高溫銲料系統 12 2-3-4 Au-Ge高溫銲料系統 13 2-4 Au-Cu-Ge三元系統相平衡 15 2-4-1 Au-Ge 15 2-4-2 Au-Cu 15 2-4-3 Cu-Ge 16 2-4-4 Au-Cu-Ge 16 第3章 實驗方法 17 3-1 Au12Ge/Cu於400 OC下之液固界面反應 17 3-1-1 Au-12Ge合金與銅基材之擴散偶製備 17 3-2 Au-Cu-Ge於400 OC下之等溫橫截面圖 18 3-3 Au-12Ge合金與銅基材在300 OC下之界面反應 18 3-4 分析 18 第4章 結果與討論 19 4-1 Au-Cu-Ge 於400 OC 下之等溫橫截面圖 19 4-2 Au-12Ge/Cu 於400 OC下之液固界面反應 45 4-2-1 微結構分析與生成相鑑定 45 4-2-2 成長機制與擴散路徑之探討 48 4.2.2.1 成長機制 48 4.2.2.2 擴散路徑 50 4-3 Au-12Ge/Cu於300 OC下之固固界面反應 60 4-3-1 微結構分析與相鑑定 60 第5章 結論 66 參考文獻 67 附錄I TEM 電子繞射影像 i 附錄II 金銅鍺三元系統液相線投影圖 A 附錄III 矽鍺合金製備 N

    1. “Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. EC, 2003.”
    2. 陳信文, 陳立軒, 林永森 and 陳志銘 (2005), “電子構裝技術與材料.”
    3. Kodentsov, Aa, Gf Bastin and Fjj Van Loo (2001), “The diffusion couple technique in phase diagram determination,”Journal of Alloys and Compounds, 320(2) pp. 207-217.
    4. Su, L.H., Y.W. Yen, C.C. Lin and S.W. Chen (1997), “Interfacial reactions in molten Sn/Cu and molten In/Cu couples,”Metallurgical and Materials Transactions B, 28(5) pp. 927-934.
    5. Van Loo, Fjj (1990), “Multiphase diffusion in binary and ternary solid-state systems,”Progress in Solid State Chemistry, 20(1) pp. 47-99.
    6. Schaefer, M., R.A. Fournelle and J. Liang (1998), “Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control,”Journal of Electronic Materials, 27(11) pp. 1167-1176.
    7. Kirkaldy, Js and Lc Brown (1963), “Diffusion behaviour in ternary, multiphase systems,”Canadian Metallurgical Quarterly, 2(1) pp. 89-115.
    8. Yamada, Y., Y. Takaku, Y. Yagi, Y. Nishibe, I. Ohnuma, Y. Sutou, R. Kainuma and K. Ishida (2006), “Pb-free high temperature solders for power device packaging,”Microelectronics Reliability, 46(9-11) pp. 1932-1937.
    9. Manikam, V.R. and K.Y. Cheong (2011), “Die attach materials for high temperature applications: a review,”Components, Packaging and Manufacturing Technology, IEEE Transactions on, 1(4) pp. 457-478.
    10. Suganuma, K., S.J. Kim and K.S. Kim (2009), “High-temperature lead-free solders: Properties and possibilities,”JOM Journal of the Minerals, Metals and Materials Society, 61(1) pp. 64-71.
    11. Lee, J., K. Kim, K. Suganuma, J. Takenaka and K. Hagio (2005), “Interfacial properties of Zn-Sn alloys as high temperature lead-free solder on Cu substrate,”Materials transactions, 46(11) pp. 2413.
    12. Lee, B.Z. and Dn Lee (1998), “Spontaneous growth mechanism of tin whiskers,”Acta materialia, 46(10) pp. 3701-3714.
    13. Kim, Ks, Ch Yu and Jm Yang (2006), “Tin whisker formation of lead-free plated leadframes,”Microelectronics Reliability, 46(7) pp. 1080-1086.
    14. Suganuma, K., K. Niihara, T. Shoutoku and Y. Nakamura (1998), “Wetting and interface microstructure between Sn-Zn binary alloys and Cu,”Journal of Materials Research, 13(10) pp. 2859-2865.
    15. Kim, S., K.S. Kim, S.S. Kim, K. Suganuma and G. Izuta (2009), “Improving the Reliability of Si Die Attachment with Zn-Sn-Based High-Temperature Pb-Free Solder Using a TiN Diffusion Barrier,”Journal of Electronic Materials, 38(12) pp. 2668-2675.
    16. Suganuma, K. and S. Kim (2010), “Ultra Heat-Shock Resistant Die Attachment for Silicon Carbide With Pure Zinc,”Electron Device Letters, IEEE, 31(12) pp. 1467-1469.
    17. Song, J.M., H.Y. Chuang and Z.M. Wu (2006), “Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates,”Journal of Electronic Materials, 35(5) pp. 1041-1049.
    18. Yoon, Jeong-Won, Hyun-Suk Chun, Hoo-Jeong Lee and Seung-Boo Jung (2007), “Microstructural evolution and interfacial reactions of fluxless-bonded Au-20Sn/Cu solder joint during reflow and aging,”Journal of Materials Research, 22(10) pp. 2817-2824.
    19. Chidambaram, Vivek, John Hald and Jesper Hattel (2010), “Development of Au–Ge based candidate alloys as an alternative to high-lead content solders,”Journal of Alloys and Compounds, 490(1-2) pp. 170-179.
    20. Leinenbach, C., F. Valenza, D. Giuranno, H. R. Elsener, S. Jin and R. Novakovic (2011), “Wetting and Soldering Behavior of Eutectic Au-Ge Alloy on Cu and Ni Substrates,”Journal of Electronic Materials, 40(7) pp. 1533-1541.
    21. Chidambaram, Vivek, Ho Beng Yeung and Gao Shan (2012), “Reliability of Au-Ge and Au-Si Eutectic Solder Alloys for High-Temperature Electronics,”Journal of Electronic Materials, 41(8) pp. 2107-2117.
    22. Egelkraut, S., L. Frey, M. Knoerr and A. Schletz. Evolution of shear strength and microstructure of die bonding technologies for high temperature applications during thermal aging. 2010. IEEE.
    23. Okamoto, H. and Tb Massalski (1984), “The Au− Ge (Gold-Germanium) system,”Journal of Phase Equilibria, 5(6) pp. 601-610.
    24. Wang, J., C. Leinenbach and M. Roth (2009), “Thermodynamic modeling of the Au–Ge–Sn ternary system,”Journal of Alloys and Compounds, 481(1-2) pp. 830-836.
    25. Okamoto, H., Dj Chakrabarti, De Laughlin and Tb Massalski (1987), “The Au− Cu (Gold-Copper) system,”Journal of Phase Equilibria, 8(5) pp. 454-474.
    26. Sundman, B., S.G. Fries and W.A. Oates (1998), “A thermodynamic assessment of the Au-Cu system,”Calphad, 22(3) pp. 335-354.
    27. Olesinski, Rw and Gj Abbaschian (1986), “The Cu− Ge (Copper-Germanium) system,”Journal of Phase Equilibria, 7(1) pp. 28-35.
    28. Wang, J., S. Jin, C. Leinenbach and A. Jacot (2010), “Thermodynamic assessment of the Cu–Ge binary system,”Journal of Alloys and Compounds, 504(1) pp. 159-165.
    29. King, Hw, Tb Massalski and Ll Isaacs (1963), “Axial ratio changes in HCP [zeta] phases in the systems Au---In---Cu and Cu---Ge---Au,”Acta Metallurgica, 11(12) pp. 1355-1361.
    30. Zuruzi, As, C-H Chiu, Sk Lahiri and Kn Tu (1999), “Roughness evolution of CuSn intermetallic during soldering,”Journal of applied physics, 86 pp. 4916.

    下載圖示 校內:2014-08-07公開
    校外:2014-08-07公開
    QR CODE