簡易檢索 / 詳目顯示

研究生: 邱祈翰
Chiou, Chi-Han
論文名稱: 單分子DNA微型磁箝操縱平台之研發
Micromechanically Developed Magnetic Tweezers for Manipulating Single DNA Molecules
指導教授: 李國賓
Lee, Gwo-Bin
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 129
中文關鍵詞: DNA固定技術DNA操縱連接器滯留體積單分子DNAPDMS微流體晶片磁箝微機電系統生物奈米科技
外文關鍵詞: Connector, Dead volume, DNA immobilization, DNA manipulation, Microfluidic chip, PDMS, Fluidic interconnection, Magnetic tweezers, Single DNA molecule, MEMS, Bio-nanotechnology
相關次數: 點閱:145下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   傳統上以生化實驗探討生物分子性質是巨量分子統計上的結果,相當程度上掩蓋了實際生理現象。直接研究單分子的物理性質可以提供更多基礎的力學資訊,與古典的生化實驗相互結合將更能幫助我們對生命科學的瞭解。生物奈米科技則提供一個新的方法來研究單生物分子。“由上而下”的方法是指使用微機電製程技術來製作一個微米尺度的工具,此微型裝置可以操控奈米尺度的單一DNA分子。另一方面,利用“由下而上”的方式可使分子自我組裝,主要的概念是利用生化技術合成與修飾DNA分子,使DNA分子具有功能性與專一性。本研究整合這兩種方式,巧妙地設計一種新型磁箝以研究奈米DNA分子之性質。

      本研究利用微機電製程技術發展出2-D與3-D微型磁箝來操縱單DNA分子。必須的平台技術包含(1)DNA局部區域固定技術,(2)微磁力產生裝置之製作與(3)微流體技術,均可以整合成一個DNA操縱平台。為了操縱單DNA分子,本研究發展出高效率、高專一性、高鍵結強度且與微機電製程相容的DNA固定技術。

      在2-D磁箝系統中,單DNA分子一端固定在金表面,另一端固定在微磁珠。然後對磁箝上的微線圈施加電流,可以產生所需要的磁場來移動微磁珠,藉以操縱單DNA分子。本研究成功地在六個正六角形排列的微線圈中,依序施予圓形排序之電流,使固定在金區域中連結磁珠之DNA拉伸與旋轉。為了量測微磁珠所受的拉力,利用重力、計算與校正磁力,並以單分子力學模型驗證實驗結果。實驗結果指出DNA拉力與模型預測值相當符合。此2-D磁箝對單DNA分子之作用力只在sub-pN範圍,應用僅侷限於DNA之熵響應區域。

      為了增強磁力,本研究提出了一個新型3-D微型磁箝,此磁箝含有微型電磁鐵與環形捕捉器。配合此環形捕捉器,本研究提出一個配套的DNA局部固定技術。首先,DNA兩端分別鍵結上含有硫醇基的磁珠與未含有硫醇基的磁珠。經硫醇基修飾的磁珠被環形捕捉器吸引至金表面,然後藉著金與硫醇基共價鍵結在金表面上。未經硫醇基修飾之另一端磁珠則懸浮在溶液中,受到微電磁鐵所產生的磁場之操控。為了量測DNA的彈性力,其所受磁力可先藉由微磁珠受到的流體黏滯阻力計算而得。而DNA之力位移曲線進一步以單分子力學模型驗證。實驗量得在10 mM鈉離子濃度下DNA之彈性模數為453 pN。此結果顯示出DNA在低離子濃度下受到靜電排斥力之影響而變得更容易伸長。除了操縱單個DNA分子外,利用3-D磁箝亦成功地拉伸兩條單DNA分子,結果指出DNA呈現高度地非線性行為。此裝置可產生20-pN以上的磁力將DNA分子拉伸至它整個全長以上,而不會伴隨明顯的焦耳熱。此裝置可研究單DNA分子從熵響應到彈性響應的機械性質。

      為了使磁珠從大型流體輸送裝置流暢地輸送到微型磁箝平台,本研究提出一種極小滯留體積微型連接器。利用PDMS材料以一體成型之灌模方式,以金屬線做為連接管道。直接連接微流管道與毛細管,達到消除微流管道與毛細管間滯留體積的目的,並使樣品在微流管道順暢度大為提高。該微型連接器不需任何的黏著劑、機械鑽孔與精密對位,更沒有傳統連接器使用黏著劑時可能阻斷微流管道的缺點。根據測漏實驗,此微型連接器可以承受150 psi的壓力與50 μL/min的流速。拉伸實驗顯示出它的機械性質足以承受實際的應用。此外,連接器上的毛細管可以進行抽換。此微型連接器不僅可以減少滯留體積,當與傳統的鐵氟龍管連接器比較樣品進樣實驗結果時,使用微型連接器可減少50%的稀釋效應。此極小滯留體積新型連接器明顯改善傳統連接器的缺陷及弊端。更重要的是,它可以應用於任何基材的微流體晶片。

      微型磁箝操縱平台具有原大型系統才應有的量測性與功能性,並具有以下優點:(1) 非破壞性 (2) 適當的作用力範圍 (3) 易操控 (4) 力學量測性佳 (5) 製作便宜且微機電製程相容。相信此創新之微型磁箝操縱平台將可推廣至其它生物有基線材之研究,如蛋白質與細胞,應用於生命科學與奈米科技領域。

     Directly studying the physical properties of biopolymers at the single-molecule level is often more informative than classical bulk experiments which average over several molecules. Bio-nanotechnology enables new methods of directly observing and manipulating individual biological molecules. The top-down approach can adopt MEMS (micro-electro-mechanical-systems) fabrication technologies to produce a micro-scale device, which can manipulate a single DNA molecule with a 2-nm diameter. The bottom-up process focuses on the molecular self-assembly, which operates using human-made synthesis to modify and address a single DNA molecule. This study develops a micro-magnetic platform using the synergy strategies of a top-down approach with a bottom-up process to investigate single DNA molecule properties.

     This study develops 2-D and 3-D micromachined magnetic tweezers for DNA manipulation using MEMS technologies. Essential platform technologies, including localized DNA immobilization, micro-magnetic device fabrication and microfluidics, can be integrated to form the micromachine-based DNA manipulation platform. For specific end anchoring, this study developed highly effective and strong binding methods, which are compatible with MEMS technologies, for constructing DNA molecules with two sticky ends.

     In the 2-D magnetic tweezers system, one end of a single DNA molecule was specifically bonded with a magnetic bead, and the other end was bonded with a gold surface. The molecule was then manipulated under a magnetic field generated by built-in hexagonally-aligned microcoils. This study successfully demonstrated the stretching and rotation of a single DNA molecule. To quantify the magnitude of magnetic forces acting on the DNA molecule, force calculation based on the gravity balance was performed and further verified by the Worm-Like chain (WLC) model. The measured DNA stretching forces were found to agree reasonably with the fitting values. The magnitude of forces acting on a DNA molecule is within the sub-pN range, enabling the study of DNA in an entropic region.

     To enhance magnetic forces, a new 3-D magnetic tweezers consisting of micro-electromagnets and a ling-trap structure was proposed. To improve the localized DAN immobilization efficiency, a novel ring-trapper structure was used to handle the vertical movement of magnetic beads which adhered to the DNA molecules. One extremity of the DNA molecule, which was bound to the thiol-modified magnetic bead, could be immobilized covalently on a gold surface. The other extremity, which was bound to another unmodified magnetic bead, could be manipulated under a magnetic field generated by micro-electromagnets. To measure the DNA stretching force, the magnetic force acting on the magnetic bead was calibrated by using the modified Stoke’s law. The force-extension curve was further fitted by the WLC model, Odijk’s model and Hooke’s law. A value of 453 pN for elastic modulus of DNA was obtained at an ionic strength of 10 mM Na+. This result reveals that DNA becomes more susceptible to elastic elongation at a low ionic strength due to electrostatic repulsion. In addition to a single DNA stretching, this study also successfully demonstrated the stretching of two DNA molecules using the 3-D magnetic tweezers. The experimental data reveals that DNA presents a highly nonlinear behavior. The apparatus can exert over 20-pN magnetic forces with less heating to extend the DNA molecule over the whole contour length to investigate its entropic and elastic regions.

     To connect the magnetic tweezers with the external large-scale fluid equipment efficiently, this study presented a simple and versatile micro-connector manufactured using PDMS casting. To eliminate the dead volume, a capillary was bridged to a micro-channel via a connection channel, which was formed by removing a metal wire after PDMS casting. The proposed method does not require any adhesive, precise drilling, delicate alignment procedure or micromachining processes. Additionally, the proposed method could prevent blocking of the capillaries, a phenomenon which was commonly observed when using adhesives. The proposed method can achieve detachable and reusable micro-connectors with a minimal dead volume. According to leakage tests, the micro-connector could withstand pressures up to 150 psi and a maximum flow rate of 50 μL/min. The pull-out tests show that the PDMS fitting could provide sufficient mechanical strength for practical applications. Not only does the novel micro-connector significantly eliminate the dead volume but it also raises the detection signal. Compared with the traditional Teflon tubing fitting, the micro-connector can reduce at least 50% the dilution effect for sample loading analysis because the dead volume is substantially eliminated. Most significantly, the proposed micro-connector couples capillaries to microfluidic chips more flexibly than other micro-connectors.

     With these methods, the size of the apparatus can be reduced markedly, allowing the magnetic tweezers platform to be mass-produced at low cost. Most significantly, the microfabricated system can be simplified without losing sensitivity and functionality, unlike in other methods such as the use of large-scale magnetic tweezers and optical tweezers.

    Abstract I 中文摘要 IV 致謝 VI Table of Contents VII List of Tables XI List of Figures XII Nomenclature XXII Chapter 1 Introduction 1 1.1 Physical concepts in single biopolymer 1 1.2 Biological background 2 1.3 Background of single DNA manipulation 3 1.3.1 DNA manipulators 4 1.3.2 Magnetic tweezers 8 1.3.3 Specific end anchoring 9 1.3.4 Force transducers 11 1.4 Background of micro-connectors 11 1.5 Impacts of bio-nanotechnologies 14 1.6 Motivation and objectives 14 Chapter 2 Theory, Design, and Fabrication 23 2.1 Theory 23 2.1.1 Physical models of polymers 23 2.1.2 Mechanical response of a single DNA molecule 24 2.1.3 Classical elasticity theory 26 2.1.4 Theory of magnetic tweezers 27 2.1.5 Principle of manipulation of magnetic beads 29 2.2 Design and fabrication 30 2.2.1 2-D magnetic tweezers 30 2.2.2 3-D magnetic tweezers 33 2.2.3 Minimal dead-volume connector 36 2.2.4 DNA manipulation platform with integrated a micro-connector 37 Chapter 3 Materials and Methods 53 3.1 λ-phage DNA 53 3.2 DNA construction for one-bead binding 53 3.2.1 Procedure overview 53 3.2.2 Biotinylation of one extremity of DNA 54 3.2.3 DNA purification and concentration 55 3.2.4 Incorporation of S4-dTTP into λ-DNA 56 3.2.5 DNA attachment onto the magnetic beads 58 3.2.6 DNA immobilization on the gold surface 59 3.3 DNA construction for two-bead binding 59 3.3.1 Procedure overview 59 3.3.2 Biotinylation of two extremities of DNA 60 3.3.3 Thiolization of magnetic beads 60 3.3.4 DNA attachment onto two-magnetic beads 61 3.3.5 DNA anchoring on the gold surface 61 3.4 Experimental methods of DNA manipulation 62 3.4.1 Overview of experimental setup 62 3.4.2 Fluorescent dye staining 63 3.4.3 Fluorescent microscopy 64 3.4.4 Force measurement 65 3.4.5 Force calibration 66 3.5 Test system for micro-connectors 67 3.5.1 Leakage test 67 3.5.2 Sample loading analysis 68 Chapter 4 Results and Discussion 74 4.1 DNA manipulation using 2-D magnetic tweezers 74 4.1.1 Characterization of the 2-D magnetic tweezers 74 4.1.2 DNA conformation in shear flows 75 4.1.3 Stretching and rotation of a single DNA molecule 76 4.1.4 Force measurement 78 4.2 DNA manipulation using 3-D magnetic tweezers 79 4.2.1 Characterization of the 3-D magnetic tweezers 79 4.2.2 DNA stretching with two-beads binding techniques 81 4.2.3 Preliminary experiment 83 4.2.4 Force measurement 84 4.3 Minimal dead-volume connectors 86 4.3.1 Minimal dead-volume 87 4.3.2 Leakage test 87 4.3.3 Pull-out test 89 4.3.4 Sample loading analysis 90 Chapter 5 Conclusions 107 5.1 Overview of dissertation 107 5.1.1 Manipulation of a single DNA using 2-D magnetic tweezers 107 5.1.2 Manipulation of a single DNA using 3-D magnetic tweezers 108 5.1.3 Minimal dead-volume connectors 109 5.2 Future work 110 Bibliography 112 Appendix Uncertainty Analysis 123 A.1 Uncertainty analysis theory 123 A.2 Uncertainty analysis of experimental results 124 個人簡歷 127 發表著作 128

    [1] Ishii Y and Yanagida T 2000 Single molecule detection in life science Single Mol. 1 5-16
    [2] Nishizaka T, Oiwa K, Noji H, Kimura S, Muneyuki E, Yoshida M and Kinosita K Jr. 2004 Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation Nat. Struct. Mol. Biol. 11 142-148
    [3] Revyakin A, Ebright R H and Strick T R 2004 Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation Proc. Natl. Acad. Sci. 101 4776-4780
    [4] Ishijima A, Kojima H, Funatsu T, Tokunaga M, Higuchi H and Yangaida T 1998 Simultaneous measurement of chemical and mechanical reaction Cell 92 161-171
    [5] Weiss S 1999 Fluorescence spectroscopy of single biomolecules Science 283 1676-1683
    [6] Ide T and Yanagida T 1999 An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion-channels Biochem. Biophys. Res. Comm. 265 595-599
    [7] de Mello A J 2003 Seeing single molecules Lab Chip. 3 29N-34N
    [8] Doyle P S, Bibette J, Bancaud A and Viovy J L 2002 Self-assembled magnetic matrices for DNA separation chips Science 295 2237
    [9] Lagally E T, Medintz I and Mathies R A 2001 Single-molecule DNA amplification and analysis in an integrated microfluidic device Anal. Chem. 73 565-570
    [10] Fink H W and Schonenberger C 1999 Electrical conduction through DNA molecules. Nature 398 407-410
    [11] Zhang Y, Austin R H, Kraeft J, Cox E C and Ong N P 2002 Insulating behavior of λ-DNA on the micro scale Phys. Rev. Lett. 89 198102
    [12] Karp G 2002 “Cell and molecular biology: concepts and experiments” 3th Ed. John Wiley & Sons, Inc. New York
    [13] Watson J D and Crick F H C 1953 Molecular structure of nucleic acid: a structure for deoxyribose nucleic acid Nature 171 737-738
    [14] Strick T, Allemand J, Croquette V and Bensimon D 2000 Twisting and stretching single DNA molecules Prog. Biophys. Mol. Biol. 74 115-140
    [15] Chu S 1991 Laser manipulation of atoms and particles Science 253 861-866
    [16] Perkins T T, Smith D E and Chu S 1994 Direct observation of tube-like motion of a single polymer chain Science 264 819-822
    [17] Perkins T T, Quake S R, Smith D E and Chu S 1994 Relaxation of a single DNA molecule observed by optical microscopy Science 264 822-826
    [18] Bustamante C, Marko J F, Siggia E D and Smith S 1994 Entropic elasticity of lambda-phage DNA Science 265 1599-600
    [19] Smith S B, Chi Y and Bustamante C 1996 Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules Science 271 795-799
    [20] Baumann C G, Smith S B, Bloomfield V A and Bustamante C. 1997 Ionic effects on the elasticity of single DNA molecules Proc. Natl. Acad. Sci. 94 6185-6190
    [21] Wang M D, Yin H, Landick R, Gelles J and Block S M 1997 Stretching DNA with optical tweezers Biophys. J. 72 1335-1346
    [22] Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J L, Chatenay D and Caron F 1996 DNA: an extensible molecule Science 271 792-794
    [23] Essevaz-Roulet B, Bockelmann U and Heslot F 1997 Mechanical separation of the complementary strands of DNA Proc. Natl. Acad. Sci. USA. 94 11935-11940
    [24] Shivashankar G V and Libchaber A 1997 Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezers Appl. Phys. Lett. 71 3727-3729
    [25] Rief M, Cllausen-Schaumann H and Gaub H E 1999 Sequence-dependent mechanics of single DNA molecules Nature Struct. Bio. 6 346-349
    [26] Strick T, Allemand JF, Bensimon D, Bensimon A and Croquette V 1996 The elasticity of a single supercoiled DNA molecule Science 271 1835-1837
    [27] Strick T, Allemand J F, Bensimon D, Lavery R and Croquette V 1999 Phase coexistence in a single DNA molecule Physica A 263 392-404
    [28] Haber C and Wirtz D 2000 Magnetic tweezers for DNA micromanipulation Rev. Sci. Instrum. 71 4561-4570
    [29] Gosse C and Croquette V 2002 Magnetic tweezers: Micromanipulation and force measurement at the molecular level Biophys. J. 82 3314-3329
    [30] Zlatanova J and Leuba S H 2003 Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level Biochem. Cell Biol. 81 151-159
    [31] Leuba S H, Karymov M A, Tomschik M, Ramjit R, Smith P and Zlatanova J 2003 Assembly of single chromatin fibers depends on the tension in the DNA molecule: magnetic tweezers study Proc. Natl. Acad. Sci. USA. 100 495-500
    [32] Fulconis R, Bancaud A, Allemand J F, Croquette V, Dutreix M and Viovy J L 2004 Twisting and untwisting a single DNA molecule covered by RecA protein Biophys J. 87 2552-2563
    [33] Chiou C H and Lee G B 2005 A micromachined DNA manipulation platform for the stretching and rotation of a single DNA molecule J. Micromech. Microeng. 15 109-117
    [34] Chiang M H, Huang Y Y, Chiou C H, Lee H H and Lee G B 2005 A new micromachine-based magnetic tweezers for manipulation of DNA molecules 1st International Conference on Bio-Nano-Informatics (BNI) Fusion Accepted for publishing
    [35] Bensimon D, Simon A J, Chiffaudel A, Croquette V, Heslot F and Bensimon D 1994 Alignment and sensitive detection of DNA by a moving interface Science 265 2096-2098
    [36] Zimmerman R M and Cox E C 1994 DNA stretching on functionalized gold surfaces Nucl. Acids Res. 22 492-497
    [37] Bensimon D, Simon A J, Croquette V and Bensimon D 1995 Stretching DNA with a receding meniscus: experiments and model Phys. Rev. Lett. 74 4754-4757
    [38] Allemand J F, Bensimon D, Jullin L, Bensimon A and Croquette V 1997 pH-dependent specific binding and combing of DNA Biophys. J. 73 2064-2070
    [39] Perkins T T, Smith D E and Chu S 1997 Single polymer dynamics in an elongational flow Science 276 2016-2021
    [40] Smith D E and Chu S 1998 Response of flexible polymers to a sudden elongatingal flow Science 281 1335-1340
    [41] Smith D E, Babcock H P and Chu S 1999 Single-polymer dynamics in steady shear flow Science 283 1724-1727
    [42] Doyle P S, Ladoux B and Viovy J L 2000 Dynamics of a tethered polymer in shear flow Phys. Rev. Lett. 84 4769-4772
    [43] Shrewsbury P J, Liepmann D and Muller S J 2002 Concentration effects of a biopolymer in a microfluidic device Biomedical microdevices 4 17-26
    [44] Wong P K, Lee Y K and Ho C M 2003 Deformation of DNA molecules by hydrodynamic focusing J. Fluid Mech. 497 55-65
    [45] Han J and Craighead H G 1999 Entropic trapping and sieving of long DNA molecules in a nanofluidic channel J. Vac. Sci. Technol. A 17 2142-2147
    [46] Cabodi M, Turner S W P and Craighead H G 2002 Entropic recoil separation of long DNA molecules Anal. Chem. 74 5169-5174
    [47] Washizu M, Kurosawa O, Arai I, Suzuki S and Shimamoto N 1995 Applications of electrostatic stretch-and-positioning of DNA IEEE Trans. Ind. Appl. 31 447-456
    [48] Ueda M, Yoshikawa K and Doi M 1997 Stretching of long DNA under alternating current electric fields in a concentrated polymer solution Polym. J. 29 1040-1043
    [49] Kurosawa O, Okabe K and Washizu M 2000 DNA analysis based on physical manipulation 13th IEEE International Conference on Micro Electro Mechanical Systems (MEMS ’00) pp 311-316
    [50] Namasivayam V, Larson R, Burke D T and Burns M A 2002 Electrostretching DNA molecules using polymer-enhanced media within microfabricated devices Anal. Chem. 74 3378-3385
    [51] Ziemann F, Radler J and Sackmann E 1994 Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer Biophys. J. 66 2210-2216
    [52] Tanaka T, Yamasaki H, Tsujimura N, Nakamura N and Matsunaga T 1997 Magnetic control of bacterial magnetite-myosin conjugate movement on actin cables Materials Science & Engineering C. 5 121-124
    [53] Bausch A R, Ziemann F, Boulbitch A A, Jacobson K and Sackmann E 1998 Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrhrometry Biophys. J. 75 2038-2049
    [54] Dichtl MA and Sackmann E 2002 Microheometry of semiflexible actin networks through enforced single-filament reptation: Frictional coupling and heterogeneities in entangled networks Proc. Natl. Acad. Sci. USA. 98 6533-6538
    [55] Hosu B G, Jakab K, Banki P, Toth F I and Forgacs G 2003 Magnetic tweezers for intracellular applications Rev. Sci. Instrum. 74 4158-4163
    [56] Shin J H, Mahadevan L, So P T and Matsudaira P 2004 Bending stiffness of a crystalline actin bundle J. Mo. Biol. 337 255-261
    [57] Ahn C H, Allen M G, Jun Y N, Trimmer W and Erramilli S 1996 A fully integrated micromachined magnetic particle separator IEEE Journal of Microelectromechanical Systems 5 151-158
    [58] Berger M, Castelino J, Huang R, Shah M and Austin R H 2001 Design of a microfabricated magnetic cell separator Electrophoresis 22 3883-3892
    [59] Choi J W, Liakopoulos T M and Ahn C H 2001 An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy Biosens. Bioelectron. 16 409-416
    [60] Choi J W, Oh K W, Thomas J H, Heineman W R, Halsall H B, Nevin J H, Helmicki A J, Henderson H T and Ahn C H 2002 An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities Lab Chip 2 27-30
    [61] Rong R, Choi J W and Ahn C H 2003 A functional magnetic bead/biocell sorter using fully integrated magnetic micro/nano tips 16th IEEE International Conference on Micro Electro Mechanical Systems (MEMS ’03) pp 530-533
    [62] Lee H, Purdon A M, Chu V and Westervelt R M 2004 Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays Nano Letters 4 995-998
    [63] Bain C D, Bieburck H A and Whtesides G M 1989 Comparison of self-assembled monolayers on gold: coadsorption of thiols and disulfides Langmuir 5 723-727
    [64] Sprik M, Delamarche E, Michel B, Roethlisberger U, Klein M L, Wolf H and Ringsdorf H 1994 Structure of hydrophilic self-assembled monolayers: a combined scanning tunneling microscopy and computer simulation study Langmuir 10 4116-4130
    [65] Ulman A 1996 Formation and structure of self-assembled monolayers Chem. Rev. 96 1533-1554
    [66] Manz A, Harrison D J, Verpoorte E M J, Fettinger J C, Paulus A, Ludi H and Widmer H M 1992 Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip J. Chromatogr. 593 253-258
    [67] Bruns M A, Johnson B N, Brahmasandra S N, Handique K, Webster J R, Krishnan M, Sammarco T S, Man P M, Jones D, Heldsinger D, Mastrangelo C H and Burke D T 1999 An integrated nanoliter DNA analysis device Science 282 484-487
    [68] Mouradian S 2001 Lab-on-a-chip: applications in proteomics Curr. Opin. Chem. Biol. 6 51-56
    [69] Chervet J P and Ursem M 1996 Instrumental requirements for nanoscale liquid chromatography Anal. Chem. 68 1507-1512
    [70] Veraart J R, Lingeman H and Brinkman U A T 1999 Coupling of biological sample handing and capillary electrophoresis Journal of Chromatography A 856 483-513
    [71] Jiang Y, Wang P C, Locascio L E and Lee C S 2001 Integrated plastic microfluidic devices with ESI-MS for drug screening and residue analysis Anal. Chem. 73 2048-2053
    [72] Bing N H, Wang C, Skinner C D, Colyer C L, Thibault P and Harrison D J 1999 Microfluidic devices connected to fused-silica capillaries with minimal dead volume Anal. Chem. 71 3292-3296
    [73] Li J, Thibault P, Bings N H, Skinner C D, Wang C, Colyer C and Harrison J 1999 Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests Anal. Chem. 71 3036-3045
    [74] Tsai J H and Lin L 2001Micro-to-macro fluidic interconnectors with an integrated polymer sealant J. Micromech. Microeng. 11 577-581
    [75] Puntambekar A and Ahn C H 2002 Self-aligning microfluidic interconnects for glass- and plastic-based microfluidic systems J. Micromech. Microeng. 12 35-40
    [76] Lin C C, Lee G B and Chen S H 2002 Automation for continuous analysis on microchip electrophoresis using flow-through sampling Electrophoresis 23 3550-3557
    [77] Obeid P J, Christopoulos T K, Crabtree H J and Backhouse C J 2003 Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection Anal. Chem. 75 288-295
    [78] Gonzalez C, Collins S D and Smith R L 1997 Fluidic interconnects for modular assembly of chemical microsystems 9th Int. Conf. Solid-State Sensors and Actuators (Transducers ‘97) pp 527-530
    [79] Spiering V L, van der Moolen J N, Burger G J and van der Berg A 1997 Novel microstructures and technologies applied in chemical analysis techniques 9th Int. Conf. Solid-State Sensors and Actuators (Transducers ‘97) pp 511-514
    [80] Gray B L, Jaeggi D, Mourlas N J, van Drieenhuizen B P, Williams K R, Maluf N I and Kovacs G T A 1999 Novel interconnection technologies for integrated microfluidic systems Sensors and Actuators A 77 57-65
    [81] Yao T J, Lee S, Fang W and Tai Y C 2000 Micromachined rubber O-ring micro-fluidic couplers 13th IEEE International Conference on Micro Electro Mechanical Systems (MEMS ’00) pp 624-627
    [82] Gray B L, Collins S D and Smith R L 2001 Interlocking mechanical and microfluidic interconnections fabricated by deep reactive ion etching Micro Total Analysis Systems 2001(μTAS ’01) pp 153-154
    [83] Shaikh K, Ryu K S, Fan Z and Liu C 2003 Interconnects with low dead volumes and integrated back-plane fluid jumpers Micro Total Analysis Systems 2003 (μTAS ’03) pp 1053-1056
    [84] Chabinyc M L, Chiu D T, McDonald J C, Stroock A D, Christian J F, Karger A M and Whitesides G. M 2001 An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications Anal. Chem. 73 4491-4498
    [85] Chiou C H, Lee G B, Hsu H T, Chen P W and Liao P C 2002 Micro devices integrated with microchannels and electrospray nozzles using PDMS Casting Techniques Sensors and Actuators B 86 280-286
    [86] Kim H, Ro K W, Lim K, Park N, Kim M and Hahn J H 2002 Adhesive and dead volume free interfacing between PDMS microfluidic channels Micro Total Analysis Systems 2002 (μTAS ’02) pp 401-403
    [87] Matsumoto S, Xie J and Tai Y C 2003 Polymer micro interface for fluidic probing Micro Total Analysis Systems 2003 (μTAS ’03) pp 551-554
    [88] Finer J T, Simmons R M and Spudich J A 1994 Single myosin molecule mechanics: piconewton forces and nanometre steps Nature 368 113-119
    [89] Svoboda K, Schmidt C F, Schnapp B J and Block S M 1993 Direct observation of kinesin stepping by optical trapping interferometry Nature 365 721-727
    [90] Yin H, Wang M D, Svoboda K, Landick R, Block S and Gelles J 1995 Transcription against a applied force Science 270 1653-1657
    [91] Chilkoti A, Boland T, Ratner B D and Stayton P S 1995 The relationship between ligand-binding thermodynamics and protein-ligand interaction forces measured by atomic force microscopy Biophys. J. 69 2125-2130
    [92] Marko J F and Siggia E D 1995 Stretching DNA Marcomolecules 28 8759-8770
    [93] Gittes F, Mickey B, Nettleton J and Howard J 1993 Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape J. Cell Biol. 120 923-34
    [94] Flory P J 1989 “Statistical mechanics of chain molecules” Hanser Publishers New York USA
    [95] Odijk K 1995 Stiff chains and filaments under tension Macromolecules 28 7016-7018
    [96] Skolnick J and Fixman M 1977 Electrostatic persistence length of a wormlike polyelectrolyte Macromolecules 10 944-948
    [97] Landau L D and Lifshitz E M 1986 “Theory of elasticity” 3th Ed. Pergamon Press Oxford
    [98] Landau L D and Lifshitz E M 1980 “Statistical physics” 3th Ed. Pergamon Press Oxford
    [99] Ahn C H, Kim Y J and Allen M G 1994 A fully integrated planar toroidal inductor with a micromachined nickel-iron magnetic bar IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A 17 463-469
    [100] Wu J, Quinn V and Bernstein G H 2004 Powering efficiency of inductive links with inlaid electroplated microcoils J. Micromech. Microeng. 14 576-586
    [101] Parky J Y and Allen M G 1998 Development of magnetic materials and processing techniques applicable to integrated micromagnetic devices J. Micromech. Microeng. 8 307-316
    [102] Lin C H, Lee G B, Lin Y H and Chang G L 2001 A fast-prototyping process for fabrication of microfluidic systems on soda-lime glass J. Micromech. Microeng. 11 726-732
    [103] Haber C and Wirtz D 2000 Shear-induced assembly of λ-phage DNA Biophys. J. 79 1530-1536
    [104] Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A and Struhl K 2004 “Current protocols in molecular biology” John Wiley & Sons, Inc. New York Vol. 1
    [105] Gurrieri S, Wells K S, Johnson I D and Bustamante C 1997 Direct visualization of individual DNA molecules by fluorescence microscopy: characterization of the factors affecting signal/background and optimization of imaging conditions using YOYO Anal. Biochem. 249 44-53
    [106] Fox R W and McDonald A T 1994 “Introduction to fluid mechanics” 4th Ed. John Wiley & Sons, Inc. New York pp 415-424
    [107] Happel J and Brenner H 1991 “Low Reynolds number hydrodynamics: with special applications to particulate media” Kluwer the Hague
    [108] Moffat R J 1988 Describing the uncertainties in experimental results Exp. Therm. Fluid Sci. 1 3-17
    [109] Eriksson M, Karlsson H J, Westman G and Akerman B 2003 Groove-binding unsymmetrical cyanine dyes for staining of DNA: dissociation rates in free solution and electrophoresis gels Nucleic Acids Res. 31 6235-6242
    [110] Fujimoto B S, Miller J M, Ribeiro N S and Schurr J M 1994 Effects of different cations on the hydrodynamic radius of DNA Biophys J. 67 304-308

    下載圖示 校內:2006-06-21公開
    校外:2006-06-21公開
    QR CODE