簡易檢索 / 詳目顯示

研究生: 陳凱民
Chen, Kai-min
論文名稱: 合成具螢光可調性之聚乙烯胺穩定硫化鎘量子點與其光學性質研究
Poly(vinylamine) Stabilized Colloidal CdS Quantum Dots of Color-Tunable Photoluminescence︰Synthesis and Optical Properties
指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 106
中文關鍵詞: 聚乙烯胺硫化鎘量子點
外文關鍵詞: Poly(vinylamine), CdS, Quantum dots
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用水溶性高分子-聚乙烯胺為穩定劑,成功於水與甲醇共溶劑中合成出穩定分散及具良好發光效果的硫化鎘量子點﹙CdS QDs﹚膠體溶液。而且於高鹼性下更可直接在水相中合成出可發藍色的硫化鎘量子點,於水相中合成出發藍光的硫化鎘量子點在文獻中並不多見。聚乙烯胺於水溶液中的形態,可隨著分子鏈上質子化程度高低及分子鏈於溶液中的溶解度不同而改變,當溶液pH值由低到高或改變共溶劑中水和甲醇的比例使聚乙胺溶解度下降時,其分子鏈在溶液中的形態會由展開轉變成緊密球狀。利用此特性,只要調整溶液酸鹼性及共溶劑組成便可以改變聚乙烯胺高分子對硫化鎘量子點生成時的穩定能力,並得到不同粒徑大小及發光顏色的硫化鎘量子點。
      疏水修飾之聚乙烯胺於溶液中會形成類微胞的高分子聚集形態,此種類微胞結構會改變硫化鎘量子點於溶液中的聚集形態,但對其發光性質影響不大。硫化鎘量子點的光學性質受到本身粒徑大小及表面性質影響甚大,研究中發現合成的硫化鎘量子點其粒徑大小及所具有的能階決定於穩定劑在溶液中的形態,而此形態變化可由溶液酸鹼性及共溶劑組成控制。CdS QDs的發光強度則除了以上兩點外還要加上穩定劑胺基的影響。

      In this research, the water soluble polymer Poly(vinylamine) (PVAm) was employed as a stabilizer to synthesis stable colloidal CdS QDs with good optical properties in the water-methanol co-solvent system. The peculiar feature of this work is that the emitting color of CdS QDs can be tuned from yellow to blue in aqueous solution. The CdS QDs with blue emitting light prepared in water have rarely been mentioned. The conformation of PVAm can vary from extended chains to compact coils as pH value of the solution or methanol volume fraction in the co-solvent increases. The size and emitting color of the CdS QDs can be adjusted by the conformation change of PVAm in the solution.
      Hydrophobic modified Poly(vinylamine) (HMPVAm) can form micellar-like conformation in the aqueous solution. The micellar-like conformation changes the aggregation behavior of the colloidal CdS QDs but the optical properties are almost the same with the CdS QDs prepared by PVAm. The optical properties of the colloidal CdS QDs are affected by the size and surface properties of the QDs extremely. It’s found that the size and band gap energy of the CdS QDs are controlled by the conformation of PVAm that is controlled by pH value and co-solvent content. However, the intensity of the emitting light of the CdS QDs is not only affected by the pH value and co-solvent but the anime group of the PVAm is considered.

    中文摘要…………………………………………………………………I 英文摘要…………………………………………………………………II 誌謝………………………………………………………………………III 總目錄……………………………………………………………………IV 表目錄……………………………………………………………………VII 圖目錄……………………………………………………………………VIII 符號表……………………………………………………………………XII 第一章、緒論……………………………………………………………1 1-1 前言…………………………………………………………………1 1-1.1 奈米科技…………………………………………………………1 1-1.2 半導體奈米晶體之製作及應用…………………………………4 1-1.3 硫化鎘膠體溶液…………………………………………………5 1-2 研究動機與目的……………………………………………………6 第二章、原理與文獻回顧………………………………………………8 2-1半導體量子點性質介紹……………………………………………8 2-1.1 量子侷限效應……………………………………………………9 2-1.2 表面效應………………………………………………………10 2-1.3 光學性質………………………………………………………11 2-2 發光原理…………………………………………………………13 2-3 硫化鎘量子點膠體溶液之合成…………………………………17 2-3.1 以高分子為穩定劑穩定硫化鎘量子點生成…………………18 2-3.2 聚乙烯胺﹙PVAm﹚性質介紹…………………………………24 第三章、實驗部分……………………………………………………29 3-1 藥品………………………………………………………………29 3-2 實驗器材…………………………………………………………30 3-3 分析儀器…………………………………………………………30 3-4 實驗步驟…………………………………………………………32 3-4.1 聚乙烯胺及聚乙烯胺鹽酸鹽之製備…………………………33 3-4.2 聚乙烯胺之疏水修飾…………………………………………35 3-4.3 聚乙烯胺鹽酸鹽之滴定曲線…………………………………36 3-4.4 硫化鎘量子點之製備…………………………………………38 3-4.5 鑑定與分析……………………………………………………44 第四章、結果與討論…………………………………………………47 4.1 聚乙烯胺鹽酸鹽及疏水修飾聚乙烯胺鹽酸鹽之鑑定…………47 4-2 聚乙烯胺鹽酸鹽之滴定曲線……………………………………52 4-3 硫化鎘量子點膠體溶液之合成及討論…………………………56 4-3.1 前趨物加入順序之影響………………………………………56 4-3.2 溶液起始酸鹼性之影響………………………………………59 4-3.3 共溶劑組成之影響……………………………………………62 4-3.4 氯化鎘和硫化鈉比例改變之影響……………………………68 4-3.5 改變前趨物對聚乙烯胺鹽酸鹽比例之影響…………………72 4-3.6 改變聚乙烯胺鹽酸鹽比例之影響……………………………77 4-3.7 改變反應後硫化鎘量子點膠體溶液酸鹼性之影響…………81 4-3.8 以HMPVAm為穩定劑穩定硫化鎘量子點生成…………………84 4-4 穩定劑及溶液性質對硫化鎘量子點膠體溶液之影響…………88 4-5 TEM圖討論…………………………………………………………93 第五章、結論…………………………………………………………101 參考文獻………………………………………………………………103 自述……………………………………………………………………106

    1. Liu, T.; Burger, C.; Chu, B. Prog. Polym. Sci. 2003,
    28, 5-26.
    2. Masala, O.; Seshadri, R. Annu. Rev. Mater. Res. 2004,
    34, 41-81.
    3. Rupp, J.; Birringer, R. Phys. Rev. B 1987, 36, 7888-
    7890.
    4. Marzin, J. Y.; Gérard, J. M.; Izraël, A.; Barrier, D.
    Phys. Rev. Lett.
    1994, 73, 716-716.
    5. Schmiedmayer, J. Eur. Phys. J. D 1998, 4, 57-62.
    6. Tolbert, S. H.; Herhold, A. B.; Johnson, C. S.;
    Alivisatos, A. P. Phys. Rev. Lett. 1994, 73, 3266-3269.
    7. Mathieu, H.; Richard, T.; Alkgre, J.; Lefebvre, P.;
    Arnaud, G. J. Appl. Phys. 1995, 77, 287-293.
    8. Moffitt, M. G.; Wang, C. W. Langmuir 2004, 20, 11784-
    11796.
    9. Nakayama, M.; Kim, D. G.; Mishima, T. Physica E 2004,
    21, 363-366.
    10. Douglas, E. P.; Zhao, H. Chem. Mater. 2002, 14, 1418-
    1423.
    11. Murphy, C. J.; Lakowicz, J. R.; Gryczynski, I.;
    Gryczynski, Z. J. Phys. Chem. B 1999, 103, 7613-7620.
    12. Murphy, C. J.; Sooklal, K.; Hanus, L. H.; Ploehn, H.
    J.; Sooklal, K.; Hanus, L. H.; Ploehn, H. J. Adv.
    Mater. 1998, 10, 1083-1087.
    13. Shiro, K.; Kyung, D. S.; Yukio, S. Macromolecules
    1989, 22, 2363-2366.
    14. Pelton, R.; Chen, X.; Wang, Y. Langmuir 2005, 21,
    11673-11677.
    15. Brus, L. E.; Bawendi, M. G.; CarRoll, P. J.; Wilson,
    W. L. J. Chem. Phys. 1992, 92, 946-954.
    16. Brus, L. E.; Rossetti, R.; Ellison, J. L.; Gibson, J.
    M. J. Chem. Phys. 1984, 80, 4464-4469.
    17. James, R. H.; Joseph, J. S. Chem. Soc. Rev. 1998, 27,
    65-71.
    18. Brus, L. E. J. Chem. Phys. 1983, 79, 5566-5571.
    19. Brus, L. E.; Chestnoy, N.; Harris, T. D.; Hull, R. J.
    Phys. Chem. 1986, 90, 3393-3399 1986, 90, 3393-3399.
    20. Qi, L.; Cölfen, H.; Antonietti, M. Nano Lett. 2001, 1,
    61-65.
    21. Bittner, A. M.; Kern, K.; Wu, X. C. J. Phys. Chem. B
    2005, 109, 230-239.
    22. Kuwabata, S.; Sato, K.; Hattori, S.; Chiba, T.;
    Tachibana, Y.; Torimotoyy, T. Chem. Lett. 2005, 34,
    1300-1301.
    23. Winter, J. O.; Gomez, N.; Gatzert, S.; Schmidt, C. E.;
    Korgel, B. A. Colloids and Surfaces A: Physicochem.
    Eng. 2005, 254, 147-157.
    24. Henglein, A. Chem. Rev. 1989, 89, 1861-1873.
    25. Jose, M. C.-F. Anal. Bioanal. Chem. 2006, 384, 37-40.
    26. Yongxing, Q.; Tianhong, Z.; Mark, R.; Roger, E. M.
    Macromolecules 1998, 31, 165-171 1998, 31, 165-171.
    27. Gu, L.; Zhu, S.; Hrymak, A. N. J. Appl. Polym. Sci.
    2002, 86, 3412-3419.
    28. Sumaru, K.; Matsuoka, H.; Yamaoka, H. J. Phys. Chem.
    1996, 100, 9000-9005.
    29. Pelton, R.; Chen, X.; Wang, Y. Langmuir 2006, 22, 4952-
    4958.
    30. Kirwan, L. J.; Papastavrou, G.; Borkovec, M. Nano
    Lett. 2004, 4, 149-152.
    31. Holland, N. B.; Xu, Z.; Vacheethasanee, K.; Marchant,
    R. E. Macromolecules 2001, 34, 6424-6430.
    32. Roth, I.; Simon, F.; Bellmann, C.; Seifert, A.;
    Spange, S. Chem. Mater. 2006, 18, 4730-4739.
    33. Roth, I.; Jbarah, A. A.; Holze, R.; Friedrich, M.;
    Spange, S. Macromol. Rapid Commun. 2006, 27, 193-199.
    34. Dong, C.; Wang, Z.; Yi, C.; Wang, S. J. Appl.
    Polym. Sci. 2006, 101, 1885-1891.
    35. Rivas, B. L.; Seguel, G. V.; Geckeler, K. E. Die
    Angewandte Makromolekulare Chemie 1997, 251, 97-106.
    36. Grubisic, Z.; Rempp, P.; Benoit, H. J. Appl. Polym.
    Sci. 1959, 1, 56-62.
    37. Vasheghani, F. B.; Rajabi, F. H.; Ahmadi, M. H.;
    Nouhi, S. Polym. Bull. 2005, 55, 437-445.
    38. Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. J.
    Am. Chem. SOC. 1987, 109, 5649-5655.
    39. Gao, X.; Chen, W. C.-W.; Nie, S. J. Biomed. Opt. 2002,
    7, 532-537.
    40. Landes, C.; Burda, C.; Braun, M.; Sayed, A. E. J.
    Phys. Chem. B 2001, 105, 2981-2986.
    41. Spanhel, L.; Weller, H.; Fojtik, A.; Henglein, A. Ber.
    Bunsenges. Phys. Chem. 1987, 91, 88-94.
    42. Resch, U.; Eychmiiller, A.; Haase, M.; Weller, H.
    Langmuir 1992, 8, 2215-2218.

    下載圖示 校內:2009-07-13公開
    校外:2009-07-13公開
    QR CODE