| 研究生: |
陳凱民 Chen, Kai-min |
|---|---|
| 論文名稱: |
合成具螢光可調性之聚乙烯胺穩定硫化鎘量子點與其光學性質研究 Poly(vinylamine) Stabilized Colloidal CdS Quantum Dots of Color-Tunable Photoluminescence︰Synthesis and Optical Properties |
| 指導教授: |
侯聖澍
Hou, Sheng-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 聚乙烯胺 、硫化鎘 、量子點 |
| 外文關鍵詞: | Poly(vinylamine), CdS, Quantum dots |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用水溶性高分子-聚乙烯胺為穩定劑,成功於水與甲醇共溶劑中合成出穩定分散及具良好發光效果的硫化鎘量子點﹙CdS QDs﹚膠體溶液。而且於高鹼性下更可直接在水相中合成出可發藍色的硫化鎘量子點,於水相中合成出發藍光的硫化鎘量子點在文獻中並不多見。聚乙烯胺於水溶液中的形態,可隨著分子鏈上質子化程度高低及分子鏈於溶液中的溶解度不同而改變,當溶液pH值由低到高或改變共溶劑中水和甲醇的比例使聚乙胺溶解度下降時,其分子鏈在溶液中的形態會由展開轉變成緊密球狀。利用此特性,只要調整溶液酸鹼性及共溶劑組成便可以改變聚乙烯胺高分子對硫化鎘量子點生成時的穩定能力,並得到不同粒徑大小及發光顏色的硫化鎘量子點。
疏水修飾之聚乙烯胺於溶液中會形成類微胞的高分子聚集形態,此種類微胞結構會改變硫化鎘量子點於溶液中的聚集形態,但對其發光性質影響不大。硫化鎘量子點的光學性質受到本身粒徑大小及表面性質影響甚大,研究中發現合成的硫化鎘量子點其粒徑大小及所具有的能階決定於穩定劑在溶液中的形態,而此形態變化可由溶液酸鹼性及共溶劑組成控制。CdS QDs的發光強度則除了以上兩點外還要加上穩定劑胺基的影響。
In this research, the water soluble polymer Poly(vinylamine) (PVAm) was employed as a stabilizer to synthesis stable colloidal CdS QDs with good optical properties in the water-methanol co-solvent system. The peculiar feature of this work is that the emitting color of CdS QDs can be tuned from yellow to blue in aqueous solution. The CdS QDs with blue emitting light prepared in water have rarely been mentioned. The conformation of PVAm can vary from extended chains to compact coils as pH value of the solution or methanol volume fraction in the co-solvent increases. The size and emitting color of the CdS QDs can be adjusted by the conformation change of PVAm in the solution.
Hydrophobic modified Poly(vinylamine) (HMPVAm) can form micellar-like conformation in the aqueous solution. The micellar-like conformation changes the aggregation behavior of the colloidal CdS QDs but the optical properties are almost the same with the CdS QDs prepared by PVAm. The optical properties of the colloidal CdS QDs are affected by the size and surface properties of the QDs extremely. It’s found that the size and band gap energy of the CdS QDs are controlled by the conformation of PVAm that is controlled by pH value and co-solvent content. However, the intensity of the emitting light of the CdS QDs is not only affected by the pH value and co-solvent but the anime group of the PVAm is considered.
1. Liu, T.; Burger, C.; Chu, B. Prog. Polym. Sci. 2003,
28, 5-26.
2. Masala, O.; Seshadri, R. Annu. Rev. Mater. Res. 2004,
34, 41-81.
3. Rupp, J.; Birringer, R. Phys. Rev. B 1987, 36, 7888-
7890.
4. Marzin, J. Y.; Gérard, J. M.; Izraël, A.; Barrier, D.
Phys. Rev. Lett.
1994, 73, 716-716.
5. Schmiedmayer, J. Eur. Phys. J. D 1998, 4, 57-62.
6. Tolbert, S. H.; Herhold, A. B.; Johnson, C. S.;
Alivisatos, A. P. Phys. Rev. Lett. 1994, 73, 3266-3269.
7. Mathieu, H.; Richard, T.; Alkgre, J.; Lefebvre, P.;
Arnaud, G. J. Appl. Phys. 1995, 77, 287-293.
8. Moffitt, M. G.; Wang, C. W. Langmuir 2004, 20, 11784-
11796.
9. Nakayama, M.; Kim, D. G.; Mishima, T. Physica E 2004,
21, 363-366.
10. Douglas, E. P.; Zhao, H. Chem. Mater. 2002, 14, 1418-
1423.
11. Murphy, C. J.; Lakowicz, J. R.; Gryczynski, I.;
Gryczynski, Z. J. Phys. Chem. B 1999, 103, 7613-7620.
12. Murphy, C. J.; Sooklal, K.; Hanus, L. H.; Ploehn, H.
J.; Sooklal, K.; Hanus, L. H.; Ploehn, H. J. Adv.
Mater. 1998, 10, 1083-1087.
13. Shiro, K.; Kyung, D. S.; Yukio, S. Macromolecules
1989, 22, 2363-2366.
14. Pelton, R.; Chen, X.; Wang, Y. Langmuir 2005, 21,
11673-11677.
15. Brus, L. E.; Bawendi, M. G.; CarRoll, P. J.; Wilson,
W. L. J. Chem. Phys. 1992, 92, 946-954.
16. Brus, L. E.; Rossetti, R.; Ellison, J. L.; Gibson, J.
M. J. Chem. Phys. 1984, 80, 4464-4469.
17. James, R. H.; Joseph, J. S. Chem. Soc. Rev. 1998, 27,
65-71.
18. Brus, L. E. J. Chem. Phys. 1983, 79, 5566-5571.
19. Brus, L. E.; Chestnoy, N.; Harris, T. D.; Hull, R. J.
Phys. Chem. 1986, 90, 3393-3399 1986, 90, 3393-3399.
20. Qi, L.; Cölfen, H.; Antonietti, M. Nano Lett. 2001, 1,
61-65.
21. Bittner, A. M.; Kern, K.; Wu, X. C. J. Phys. Chem. B
2005, 109, 230-239.
22. Kuwabata, S.; Sato, K.; Hattori, S.; Chiba, T.;
Tachibana, Y.; Torimotoyy, T. Chem. Lett. 2005, 34,
1300-1301.
23. Winter, J. O.; Gomez, N.; Gatzert, S.; Schmidt, C. E.;
Korgel, B. A. Colloids and Surfaces A: Physicochem.
Eng. 2005, 254, 147-157.
24. Henglein, A. Chem. Rev. 1989, 89, 1861-1873.
25. Jose, M. C.-F. Anal. Bioanal. Chem. 2006, 384, 37-40.
26. Yongxing, Q.; Tianhong, Z.; Mark, R.; Roger, E. M.
Macromolecules 1998, 31, 165-171 1998, 31, 165-171.
27. Gu, L.; Zhu, S.; Hrymak, A. N. J. Appl. Polym. Sci.
2002, 86, 3412-3419.
28. Sumaru, K.; Matsuoka, H.; Yamaoka, H. J. Phys. Chem.
1996, 100, 9000-9005.
29. Pelton, R.; Chen, X.; Wang, Y. Langmuir 2006, 22, 4952-
4958.
30. Kirwan, L. J.; Papastavrou, G.; Borkovec, M. Nano
Lett. 2004, 4, 149-152.
31. Holland, N. B.; Xu, Z.; Vacheethasanee, K.; Marchant,
R. E. Macromolecules 2001, 34, 6424-6430.
32. Roth, I.; Simon, F.; Bellmann, C.; Seifert, A.;
Spange, S. Chem. Mater. 2006, 18, 4730-4739.
33. Roth, I.; Jbarah, A. A.; Holze, R.; Friedrich, M.;
Spange, S. Macromol. Rapid Commun. 2006, 27, 193-199.
34. Dong, C.; Wang, Z.; Yi, C.; Wang, S. J. Appl.
Polym. Sci. 2006, 101, 1885-1891.
35. Rivas, B. L.; Seguel, G. V.; Geckeler, K. E. Die
Angewandte Makromolekulare Chemie 1997, 251, 97-106.
36. Grubisic, Z.; Rempp, P.; Benoit, H. J. Appl. Polym.
Sci. 1959, 1, 56-62.
37. Vasheghani, F. B.; Rajabi, F. H.; Ahmadi, M. H.;
Nouhi, S. Polym. Bull. 2005, 55, 437-445.
38. Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. J.
Am. Chem. SOC. 1987, 109, 5649-5655.
39. Gao, X.; Chen, W. C.-W.; Nie, S. J. Biomed. Opt. 2002,
7, 532-537.
40. Landes, C.; Burda, C.; Braun, M.; Sayed, A. E. J.
Phys. Chem. B 2001, 105, 2981-2986.
41. Spanhel, L.; Weller, H.; Fojtik, A.; Henglein, A. Ber.
Bunsenges. Phys. Chem. 1987, 91, 88-94.
42. Resch, U.; Eychmiiller, A.; Haase, M.; Weller, H.
Langmuir 1992, 8, 2215-2218.