簡易檢索 / 詳目顯示

研究生: 梁郁翎
Liang, Yu-Ling
論文名稱: 利用超音波噴墨製作銀薄膜之電磁波屏蔽效應研究
Electromagnetic Interference Shielding Effect of Silver Films Using Nozzle-Less Ultrasonic Spray Coating Process
指導教授: 陳引幹
Chen, In-Gann
郭昌恕
Kuo, Chang-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 73
中文關鍵詞: 奈米銀導電墨水超音波無噴嘴噴墨電磁波屏蔽效應
外文關鍵詞: silver nano particle, conductive ink, ultrasonic nozzle-less spray coating, emi shielding effect
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應5G時代的來臨,攜帶式電子及通訊產品在功能上能夠更高速且高效地傳輸訊號,I/O腳的數量及密度皆因而提高,電子元件間距也隨之縮短,使得電子元件間的電磁波干擾(Electromagnetic Interference, EMI)情況變得嚴峻。為了使得電子元件正常運作不受干擾,電磁波屏蔽技術因應而生,將部分元件產生的雜訊導致的電磁波干擾透過屏蔽材料進行吸收、反射以達到其他元件不受干擾的目的。
    與此同時,隨著IC構裝尺寸日漸地輕薄短小且組成複雜,對電磁波屏蔽的要求除了優越的電磁波屏蔽效能外,也能達到與構裝貼合共形以優化封裝空間利用率,或是能夠針對局部的電子元件進行電磁波屏蔽。
    因此,本研究期望以超音波無噴嘴噴墨將兩種不同導電奈米銀墨水製成燒結銀薄膜作為電磁波屏蔽材料,並分析多種不同製程條件,變因包括基板/陰乾溫度、燒結溫度及噴墨次數等,對燒結銀薄膜的電導率、孔隙率、表面粗糙度以及膜厚等物理性質相互間的影響,以及對電磁波干擾屏蔽效能(EMI SE)的影響。
    本研究的最終目標是利用頻譜分析儀、近場探針及XY雙軸電控步進移動平台進行訊號源的大面積訊號強度掃描量測,將燒結銀薄膜作為電磁波屏蔽材料進行對Wi-Fi模組訊號發射天線的部分電磁波屏蔽,得到具有空間解析性的強度分布結果,以模擬實際應用過程中電磁波屏蔽材料破損,利用面掃描訊號強度量測手法找尋材料破損點的分析過程。
    研究結果顯示,在膜厚一致的條件下,基板/陰乾溫度(100℃)及燒結溫度(230℃)越高,電導率越高;隨著孔隙率下降,電導率顯著地提高;隨著表面粗糙度下降,電導率些微地提高;隨著電導率增加,電磁波屏蔽效能上升;隨著膜厚增加,電磁波屏蔽效能上升;訊號強度下降至15~20%,解析度約為0.2mm。

    In response to the advent of the 5G era, it is required to be capable of effective and high-speed signal transmission for the multi-functional mobile electronics. As a result, the number and density of I/O pins have increased, and the distance between electronic components has been shortened, which makes the EMI (electromagnetic interference) situation between electronic components more and more serious. In order to ensure the normal working of various electronic components, EMI shielding technology was developed to absorb and reflect the EMI caused by the noises generated from some components through the EMI shielding material so that other components are not interfered with.
    At the same time, as IC packages become increasingly thinner, smaller, and more complex, requirements for EMI shielding include not only outstanding EMI shielding effectiveness, but also conformal conformity to the package to optimize packaging space utilization, or able to shield local electronic components from EMI.
    Therefore, this study uses ultrasonic nozzle-less spray to make sintered silver films from two different kinds of conductive nano silver ink as EMI shields, and analyze how a variety of different process conditions, including substrate/drying temperature, sintering temperature and the times of spray, to affect each other on the physical properties such as conductivity, porosity, surface roughness and film thickness of the sintered silver film, as well as impact on the electromagnetic interference shielding effectiveness (EMI SE).
    The ultimate goal of this research is to use a spectrum analyzer, a near field probe and an XY dual-axis electronically controlled stepper platform to conduct large-area signal intensity scanning measurement. Therefore, a spatially resolved intensity distribution result would be obtained. We utilize this characteristic to simply simulate that find the position of the damaged EMI shield during actual application by using sintered silver thin film as an EMI shield to partially shield the Wi-Fi module signal transmitting antenna.
    Research results show that under the condition of consistent film thickness, the higher the substrate/shade temperature (100°C) and sintering temperature (230°C), the higher the electrical conductivity; as the porosity decreases, the electrical conductivity increases significantly; as the surface roughness decreases, the electrical conductivity increases slightly; as the electrical conductivity increases, the EMI SE increases; as the film thickness increases, the EMI SE increases. The measurement system of a spectrum analyzer and a near-field probe can achieve the purpose of finding damaged points, and its resolution can be as low as 0.2mm.

    摘要 I ABSTRACT II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 1 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 2 第二章 文獻回顧 3 2-1 超音波 3 2-2 奈米效應及應用 3 2-2-1 奈米效應 3 2-2-2 表面效應(Surface Effect) 3 2-2-3 量子尺寸效應(Quantum Size Effect) 4 2-2-4 小尺寸效應 (Small Size Effect) 4 2-2-5 量子穿隧效應(Quantum Tunneling Effect) 5 2-3 金屬粉末顆粒燒結行為 5 2-4 電磁波干擾(ELECTROMAGNETIC INTERFERENCE) 6 2-5 電磁波屏蔽原理 7 2-6 對電磁波屏蔽效應的影響因素 8 2-6-1 集膚深度(Skin Depth) 8 2-6-2 膜厚 9 2-6-3 電導率 10 2-7 電磁波屏蔽製程發展 12 2-7-1 非共形(Non-conformal Coating) 12 2-7-2 共形(Conformal Coating) 12 2-7-2-1 濺鍍(Sputtering) 12 2-7-2-2 噴塗(Spray) 13 3 第三章 實驗方法與步驟 15 3-1 實驗材料 15 3-2 實驗流程與方法 16 3-2-1 自製銀墨水製備 16 3-2-2 銀墨水對玻璃纖維板(FR4)之接觸角試驗 17 3-2-3 樣品製備 18 3-2-3-1 超音波無嘴噴墨器(Ultrasonic Nozzle-less Spray) 18 3-2-3-2 商用銀墨水(Sigma Aldrich) 20 3-2-3-3 自製銀墨水 20 3-2-4 燒結銀墨水之孔隙率分析 21 3-2-5 燒結銀薄膜之膜厚分析 22 3-2-6 燒結銀薄膜之電磁波屏蔽效能實驗 22 3-3 量測與分析儀器 24 3-3-1 白光干涉儀 24 3-3-2 四點探針量測儀(Four-Point Probes Resistance Meter) 26 3-3-3 熱重分析儀(TGA) 28 3-3-4 頻譜分析儀(Spectrum Analyzer) 29 3-3-5 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 30 3-3-6 手持式光學顯微鏡(Handle Optical Microscopy) 31 3-3-7 向量網路分析儀(Vector Network Analyzers, VNA) 32 4 第四章 結果與討論 33 4-1 陰乾燒結前銀墨水性質分析—變因:不同銀墨水 33 4-2 陰乾燒結中的銀墨水分析—變因:不同銀墨水 35 4-3 燒結後銀薄膜表面形貌及截面結構分析—變因:不同製程條件 37 4-3-1 SEM表面形貌觀察分析 37 4-3-2 燒結銀薄膜組織結構觀察及厚度的量測 41 4-4 燒結銀薄膜之物理性質分析—變因:不同製程條件 44 4-4-1 電導率(Conductivity, σ) 44 4-4-2 表面粗糙度(Roughness-Sa) 45 4-4-3 孔隙率 46 4-5 燒結銀薄膜之EMI電磁波屏蔽效應 47 4-5-1 電磁波屏蔽效能SE—變因:物理性質 47 4-5-2 對Wi-Fi模組的電磁波遮蔽應用—變因:不同電導率之燒結銀薄膜 49 4-5-3 頻譜分析儀量測系統之量測解析度 51 5 第五章 結論 53 參考文獻 54

    1 Karim, N., et al. (2010). Improving electromagnetic compatibility performance of packages and SiP modules using a conformal shielding solution. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, IEEE.
    2 Zhang, X., et al. (2022). Effective Conformal EMI Shielding Coating for SiP modules with Multi-shaped Nano-Ag Fillers. 2022 23rd International Conference on Electronic Packaging Technology (ICEPT): 1-4.
    3 Erickson, S. and M. Sakaguchi (2020). Application of package-level high-performance EMI shield material with a novel nozzleless spray coating technology. 2020 IEEE 70th Electronic Components and Technology Conference (ECTC): 1691-1696.
    4 Joo, K., et al. (2017). Package-level EMI shielding technology with silver paste for various applications. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), IEEE.
    5 Wikipedia, Ultrasound
    6 Lai, H., et al. (2020). Study on the interconnect performance of multicomponent paste for 3rd generation semiconductor packaging. 2020 21st International Conference on Electronic Packaging Technology (ICEPT), IEEE.
    7 Shen, Q., et al. (2022). The Surface Treated Nano-silver Particles Assisted Silver Paste for Power Semiconductor Application. 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), IEEE.
    8 Moo-Young, M. (2019). Comprehensive biotechnology, Elsevier.
    9 馬遠榮 (2002). 奈米科技, 商周出版.
    10 邱純慧 (2014). 全球奈米銀市場與應用發展趨勢分析.Available from: https://www.materialsnet.com.tw/DocView.aspx?id=14983.
    11 Ekimov, A. I., et al. (1985). "Quantum size effect in semiconductor microcrystals." Solid State Communications 56(11): 921-924.
    12 Wang, L., et al. (2022). "Small‐scale big science: From nano‐to atomically dispersed catalytic materials." Small Science 2(11): 2200036.
    13 Zhang, P., et al. (2019). "Effect of nanoparticles addition on the microstructure and properties of lead-free solders: a review." Applied Sciences 9(10): 2044.
    14 Razavy, M. (2013). Quantum theory of tunneling, World Scientific.
    15 Moshiri, M. (2020). "Integrated process chain for first-time-right mould components production using laser powder bed fusion metal additive manufacturing."
    16 Tanaka, H., et al. (2012). "Strongly connected ex situ MgB2 polycrystalline bulks fabricated by solid-state self-sintering." Superconductor Science and Technology 25(11): 115022.
    17 林獻堂 (1996) 。EMI電磁干擾。捷運技術,14卷,173-181。
    18 Wikipedia, Near and far field
    19 Wang, X.-Y., et al. (2022). "Electromagnetic interference shielding materials: recent progress, structure design, and future perspective." Journal of Materials Chemistry C 10(1): 44-72.
    20 Banerjee, P., et al. (2019). "Lightweight Epoxy-Based Composites for EMI Shielding Applications." Journal of Electronic Materials 49(3): 1702-1720.
    21 Wikipedia, Skin effect
    22 Shahzad, F., et al. (2016). "Electromagnetic interference shielding with 2D transition metal carbides (MXenes)." Science 353(6304): 1137-1140.
    23 Woo, S., et al. (2023). "Formation of Silver Layer with a Multiporous Structure from Silver Nanoparticles for Highly Efficient Electromagnetic Interference Shielding Materials." ACS Applied Nano Materials 6(12): 10087-10096.
    24 Zhang, J., et al. (2022). "Flexible and ultra-thin silver films with superior electromagnetic interference shielding performance via spin-coating silver metal–organic decomposition inks." Materials Advances 3(1): 647-657.
    25 Montes, J. M., et al. (2008). "Porosity effect on the electrical conductivity of sintered powder compacts." Applied Physics A 92(2): 375-380.
    26 Palasantzas, G. and J. Barnaś (1997). "Surface-roughness fractality effects in electrical conductivity of single metallic and semiconducting films." Physical review B 56(12): 7726.
    27 Javidjam, A., et al. (2018). "Effect of surface roughness on electrical conductivity and hardness of silver plated copper." Materials Research Express 6(3).
    28 王宗雄 (2001)。無線通訊之電磁干擾影響與防制對策。電子與材料雜誌,第11期。
    29 Bose, S., et al. (2013). "Process optimization of ultrasonic spray coating of polymer films." Langmuir 29(23): 6911-6919.
    30 Deepu, P., et al. (2018). "Dynamics of ultrasonic atomization of droplets." Experimental Thermal and Fluid Science 92: 243-247.
    31 Chang, C. and P. Farrell (1997). "A study on the effects of fuel viscosity and nozzle geometry on high injection pressure diesel spray characteristics." SAE transactions: 558-567.
    32 Wong, G. and J. Choi (2019). "Dispensing EMI Shielding Materials: An Alternative to Sputtering." Henkel and Nordson Inc., 2019.
    33 Hsu, Steve Lien-Chung, Yen-Ting Chen, Meng-Liang Chen, and In-Gann Chen. 2021. "Low Sintering Temperature Nano-Silver Pastes with High Bonding Strength by Adding Silver 2-Ethylhexanoate" Materials 14, no. 20: 5941. Doi : 10.3390/ma14205941
    34 Wiki., D., What is beading
    35 Guerra-Bravo, E., et al. (2021). "Vibration Analysis of a Piezoelectric Ultrasonic Atomizer to Control Atomization Rate." Applied Sciences 11(18).
    36 Erickson, S., et al. (2020). EMI shielding for system in package using nozzle-less ultrasonic spray coating and silver particle free ink. 2020 International Wafer Level Packaging Conference (IWLPC), IEEE.
    37 Joo, K., et al. (2018). High Performance EMI Shielding Materials and Spraying Process Parameters for High Frequency FCBGA Application. 2018 IEEE 68th Electronic Components and Technology Conference (ECTC): 1842-1847.
    38 IEC TS 61967-3:2014 Integrated circuits - Measurement of electromagnetic emissions - Part 3: Measurement of radiated emissions - Surface scan method
    39 宜特科技, 電磁相容性(EMC)測試
    40 安立知(Anritsu), Signal Analyzer MS2830A, Product Introduction
    41 Rohde & Schwarz, Spectrum Analyzer Fundamentals – Theory and Operation of Modern Spectrum Analyzers
    42 Tektronix, 實用EMI疑難排解, 2014
    43 Wikipedia, Michelson interferometer,
    44 Keyence, 白光干涉儀原理解析與比較
    45 LIGHTTRANS. Laser-Based Michelson Interferometer.
    46 Andrew P. Schuetze, Wayne Lewis, Chris Brown, Wilhelmus J. Geerts, “A laboratory on the four-point probe technique.” Am. J. Phys. 72 (2): 149–153. 2004, doi.: 10.1119/1.1629085
    47 M.A. Green, M.W. Gunn, “The evaluation of geometrical effects in four-point probe measurements,” Solid-State Electronics, Volume 14, 1167-1177, 1971, doi.: 10.1016/0038-1101(71)90029-3.
    48 Saadatkhah, N., et al. (2020). "Experimental methods in chemical engineering: Thermogravimetric analysis—TGA." The Canadian Journal of Chemical Engineering 98(1): 34-43.
    49 Al Adnani, A., et al. (2013). "Spectrum analyzers today and tomorrow: part 1 towards filterbanks-enabled real-time spectrum analysis." IEEE Instrumentation & Measurement Magazine 16(5): 6-11.
    50 ASTM D4935-18; Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. ASTM International: West Conshohocken, PA, USA, 2018.
    51 Tektronix, 向量網路分析儀基礎介紹, 入門手冊

    無法下載圖示 校內:2029-07-30公開
    校外:2029-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE