| 研究生: |
吳翊熙 Wu, YiSi |
|---|---|
| 論文名稱: |
氫化鉭酸鈉光觸媒在可見光分解水產氫之應用 Hydrogenated NaTaO3 as Photocatalysts for Hydrogen Generation from Water Splitting under Visible-Light Irradiation. |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 鉭酸鈉 、氫化 、分解水 、產氫 、鈣鈦礦 |
| 外文關鍵詞: | NaTaO3, Hydrogenation, perovskite, Water splitting, Hydrogen generation. |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了發展能夠充分利用太陽光來進行分解水產氫的光觸媒,本研究對紫外光下擁有絕佳活性的鉭酸鈉進行氫化改質。然而鉭酸鈉是屬於最密堆積的鈣鈦礦結構(Closed-packed perovskite),要藉由氫化來扭曲其晶格其效果是有限的,於是在本研究當中,藉由在合成的過程中調整鈉在觸媒中的含量,並透過拉曼及X光繞射儀對結構進行鑑定,確保此方法能夠在不破壞鉭酸鈉的鈣鈦礦結構下導入鈉空缺(sodium vacancy),此鈉空缺能夠為整體結構提供額外的空間(extra space),在氫化的過程中導入更多的扭曲晶格,當扭曲晶格的數量提升時,更能在結構當中形成四價鉭離子存在,此四價鉭的存在能夠幫助光生電子在觸媒上的傳遞,有效提高電子電洞對分離的效果。由紫外-可見光吸收光譜的結果能夠明顯的看到在氫化之後的鉭酸鈉能夠在可見光區域內產生一條非常寬廣且具延續性的吸收峰。
由光觸媒分解水的研究結果顯示氫化後的鉭酸鈉在可見光的照射下的確具有相當高的活性,鈉含量較低的鉭酸鈉在氫化之後更能進一步的提升光分解水產氫的效率,且在長時間的穩定性測試當中也表現出優異的效果。
In order to develop an excellent and stable photocatalyst for water splitting under visible-light irradiation, we modified the NaTaO3 by using hydrogenation. However, NaTaO3 was difficult to introduce sufficient disorder lattices by hydrogenation because of its closed-packed perovskite structure.
In the present work, we improved the hydrogenation effect of NaTaO3 by using a simple method, which decreased the ratio of Na to Ta as synthesizing NaTaO3 photocatalyst. According to the XRD and Raman spectrum results, this process couldn't destroy NaTaO3 perovskite structure. NaTaO3 which contented lower sodium would form sodium vacancy and provide extra space for introducing disorder lattices during hydrogenation. On the basis of water splitting result, hydrogenated NaTaO3 shows a outstanding photocatalytic activity and stability. Followed by decreasing the ratio of Na to Ta, the hydrogen evolution ability could get much higher.
1.張立群譯,“光清淨革命-活躍的二氧化鈦光觸媒”,協志工業叢書印行,2000.
2.A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature. 238, 37, 1972.
3.A. Kudo, H. Kato, I. Tsuji, Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting , Chem. Lett. 33, 1534, 2004.
4.A. Kudo, Photocatalyst materials for water splitting , Catal. Surv. Asia, 31, 7, 2003.
5.A. Mills, S. L. Hnute, J. An overview of semiconductor photocatalysis , J. Photochem. Photobiol. A:Chem. 108, 1,1997.
6.M. Grätzel, Photoelectrochemical cells, Nature. 414, 338,2001.
7.A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38, 253, 2009.
8.F. E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chem. Mater. 20, 35, 2008.
9.K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation, Chem. Commun. 24,16, 2001.
10.H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation, Chem. Lett. 33, 13, 48, 2004.
11.R. Abe, K. Sayama, H. Sugihara, Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3−/I−, J. Phys. Chem. B. 109, 16052, 2005.
12.A. Kudo, Development of photocatalyst materials for water splitting, Inter. J. Hydrogen Energy. 31, 197, 2006.
13.M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production, J. Thomas, Catal. Today. 122, 51, 2007.
14.Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, H. Kato, Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts, J. Solid State Chem. 177, 4205, 2004.
15.N. Nian, C. C. Hu, H. Teng, Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination, Inter. J. Hydrogen Ener. 33, 2897, 2008.
16.Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, K. Ozawa, Electrochemistry of Titanate(IV) Layered Oxides, J. Phys. Chem. B. 105, 10893, 2001.
17.H. Kato, A. kudo, Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K), J. Phys. Chem. B. 105, 4285, 2001.
18.T. Ishihara, H. Nishiguchi, K. Fukamachi, Y. Takita, Effects of Acceptor Doping to KTaO3 on Photocatalytic Decomposition of Pure H2O, J. Phys. Chem. B. 103, 1, 1999.
19.A. Kubacka, M. Fernandez-García, G. Colon, Advanced Nanoarchitectures for Solar Photocatalytic Applications, Chem. Rev. 112, 1555, 2012.
20.W. H. Lin, C. Cheng, C. C. Hu, H. Teng, NaTaO3 photocatalysts of different crystalline structures for water splitting into H2 and O2 Appl. Phys. Lett. 89, 211904, 2006.
21.C. C. Hu, Y. L. Lee, H. Teng, Efficient water splitting over Na1-xKxTaO3 photocatalysts with cubic perovskite structure, J. Mater. Chem. 21, 3824, 2011.
22.M. Higashi, R. Abe, K. Teramura, T.Takato, B. Ohtani, K. Domen, Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3−/I- shuttle redox mediator Chem. Phys. Lett. 452, 120, 2008.
23.R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation J. Phys. Chem. B. 108, 8992, 2004.
24.H. Kato, A. Kudo, Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium, J. Phys. Chem. B. 106, 5029, 2002.
25.T. Ishii, H. Kato, A. Kudo, H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation, J. photochem. photobiol. A, 163, 181, 2004.
26.K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, Photocatalytic Overall Water Splitting on Gallium Nitride Powder, Bull. Chem. Soc. Jpn. 80, 1004, 2007.
27.M. Higashi, K. Domen, R. Abe, Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation, Energy Environ. Sci. 4, 4138, 2011.
28.H. Kato, A. Kudo, Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts , Catal. Today, 78, 561, 2003.
29.M. Wiegel, W. Middel, G. Blasse, Influence of ns2 ions on the luminescence of niobates and tantalates, J. Mater. Chem. 5, 981, 1995.
30.A. M. Srivastava, J. F. Ackerman, On the Luminescence of Ba5M4O15 (M=Ta5+, Nb5+), J. Solid State Chem. 134, 187, 1997.
31.A. Kudo, Luminescent Properties of Rare-Earth-Metal Ion-Doped KLaNb2O7 with Layered Perovskite Structures, Chem. Mater. 9, 664, 1997.
32.A. Kudo, E. Kaneko, Photoluminescence of layered perovskite oxides with triple-octahedra slabs containing titanium and niobium, J. Mater. Sci. Lett. 16, 224, 1997.
33.T. Takata, G. Hitoki, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride, Res. Chem. Intermed. 33,13, 2007.
34.K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis, J. Photochem. Photobiol., A, 148, 71, 2002.
35.R. Abe, T. Takata, H. Sugihara, K. Domen, Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3−/I− shuttle redox mediator, Chem. Commun. 3829, 2005.
36.A. Iwase, H. Kato, A. Kudo, The Effect of Alkaline Earth Metal Ion Dopants on Photocatalytic water splitting by NaTaO3 powder. ChemSusChem. 2, 873, 2009.
37.M. A. Pena, J. L. G. Fierro, Chemical Structures and Performance of Perovskite Oxides, Chem. Rev. 101,1981, 2001.
38.H. Kato, A. Kudo, Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3(A = Li, Na, and K), J. Phys. Chem. B, 105, 4285, 2001.
39.M. Liu, R. Ma, M. Fang, F. D. Li, S. H. Kang, H. M. Wang, G. T. Fei, L. D. Zhang, Structural, optical, and adsorptive properties of tantalates by a facile hydrothermal method, J. Appl. Phys. 114, 123516, 2013.
40.A. Kudo, H. Kato, Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting,Chem. Phys. Lett. 331, 373, 2000.
41.H. Kato, K. Asakura, A. Kudo, Highly Efficient Water Spliiting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure, J. Am. Chem. Soc. 125, 3082, 2003.
42.H. Kato, A. Kudo, Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts, Catal. Lett. 21, 3824, 2011.
43.C.C. Hu, H. Teng, Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting, J. Catal. 272,1, 2010.
44.H.W. Kang, S.B. Park, Water photolysis by NaTaO3-C composite prepared by spray pyrolysis, Adv. Powder Technol. 21,106, 2010.
45.A. B. Ellis, S. W. Kaiser and M. S. Wrighton, J. Phys. Chem. 1976,80,1325.
46.J. Nozik, Photoelectrochemistry : Applications to solar Energy Conversion, Annu. Rev. Phys. Chem. 29, 189, 1978.
47.X. Chen, L. Liu, Peter Y. Yu, Samuel S. Mao, Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, Science. 331, 11, 2011.
48.A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. D. Santo, Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles, J. Am. Chem. Soc. 134, 7600, 2012.
49.G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J. Z. Zhang, Y. Li, Hydrogen-treated WO3 nanoflakes show enhanced photostability, Energy Environ. Sci. 5, 6180, 2012.
50.G. Liu, J. Han, X. Zhou, L. Huang, F. Zhang, X. Wang, C. Ding, X. Zheng, H. Han, C. Li, Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen, J. Catal. 307, 148, 2013.
51.T. Leshuk, R. Parviz, P. Everett, H. Krishnakumar, R. A. Varin, F. Gu, Photocatalytic Activity of Hydrogenated TiO2, ACS Appl. Mater. Interfaces. 5, 1892, 2013.
52.H. O. Finklea, Semiconductor Electrode;Elsevier, New York, 1988.
53.R. Memming, Semiconductor Electrochemistry;Wiley-VCH, New York, 2001.
54.李佩珊,“孔洞性三氧化鎢薄膜光分解水電極之製備與研究”,國立成功大學化學工程研究所碩士論文, 2007.
55.T. Leshuk, S. Linley, F. Gu, HYDROGENATION PROCESSING OF TiO2 NANOPARTICLES, Can. J. Chem. Eng. 91, 799, 2013.
56.W. Wang, Y. Ni, C. Lu, Z. Xu, Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N–F co-doped TiO2 nanosheets Appl. Surf. Sci. 290, 125, 2014.
57.G. Wang, H. Wang, Y. Ling, Y. Tang, X.Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting, Nano Lett. 11, 3026, 2011.
58.K. Sayama, H. Arakawa, Effect of carbonate salt addition on the photocatalyticdecomposition of liquid water over Pt–TiO2 catalyst, J. Chem. Soc. Farady Trans. 93, 1647, 1997.
59.K. P. Wang, H. S. Teng, Structure-intact TiO2 nanoparticles for efficient electron transport in dye-sensitized solar cells, Appl. Phys. Lett. 91, 173102, 2007.
60.Y. Okamoto, S. Ida, J. Hyodo, H. Hagiwara, T. Ishihara, Synthesis and Photocatalytic Activity of Rhodium-Doped Calcium Niobate Nanosheets for Hydrogen Production from a Water/Methanol System without Cocatalyst Loading, J. Am. Chem. Soc. 133, 18034, 2011.
61.S. Ida, Y. Okamoto, M. Matsuka, H. Hagiwara, T. Ishihara, Preparation of Tantalum-Based Oxynitride Nanosheets by Exfoliation of a Layered Oxynitride, CsCa2Ta3O10−xNy, and their Photocatalytic Activity, J. Am. Chem. Soc. 134, 15773, 2012.
62.Y. Matsumoto, M. Koinuma, Y. Iwanaga, T. Sato, S. Ida, N Doping of Oxide Nanosheets, J. Am. Chem. Soc. 131, 6644, 2009.
63.S. Ida, C. Ogata, U. Unal, K. Izawa, T. Inoue, O. Altuntasoglu, Y. Matsumoto, Preparation of a Blue Luminescent Nanosheet Derived from Layered Perovskite Bi2SrTa2O9, J. Am. Chem. Soc. 129, 8956, 2007.
64.B. D. Cullity, S. R. Stock, “Elements of X-ray Diffraction 3rd ed ”, Prentice Hall, 2001.
65.M. Yan, F. Chem. J. Zhang, M. Anpo, “Preparation of controllable crystalline titania and study on the photocatalytic properties”, J. Phys. Chem. B, 109, 8673,2005.
66.D. G. Barton, M. Shtein, R. D. Wilson, S. L. Solied, E. Iglesia, “Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures”, J. Phys. Chem. B, 103, 630, 1999.
67.蔡承達,“鎵化合物光觸媒在分解水產氧之應用”,國立成功大學化學工程研究所碩士論文,2012.
68.C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-Ray photoelectronspectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979.
69.陳俊吉,“金屬氧化物半導體在可見光分解水製氫之研究”,國立成功大學化學工程學系碩士論文,2005.
70.T. Yu, C. G. Jin, H. Y. Zhang, L. J. Zhuge ,Z. F. Wu, X. M. Wu, Z. C. Feng, Effect of Ta incorporation on the microstructure, electrical and optical properties of Hf1-xTaxO high-k film prepared by dual ion beam sputtering deposition, Vacuum. 92, 58, 2013.
71.Y. Lee, T. Watanabe, T. Takata, J. N. Konda, M. Hara, M. Yoshimura, K. Domen, Preparation and Characterization of Sodium Tantalate Thin Films by Hydrothermal-Electrochemical Synthesis, Chem. Mater. 17, 2422, 2005.
72.E. Atanassova, G. Tyuliev, A. Paskaleva, D. Spassov, K. Kostov, XPS study of N2 annealing effect on thermal Ta2O5 layers on Si, Appl. Surf. Sci. 225, 86, 2004.
73.E. Atanassova, D. Spassov, X-ray photoelectron spectroscopy of thermal thin Ta2O5 films on Si, Appl. Surf. Sci. 135, 71, 1998.
74.G.S. Park, Y. B. Kim, S. Y. Park, X. S. Li, S. Heo, M. J. Lee, M. Chang, J. H. Kwon, M. Kim, U. I. Chung, R. Dittmann, R. Waser, K. Kim, In situ observation of filamentary conducting channels in an asymmetric Ta2O5-x/TaO2-x bilayer structure, Nat. Commun. 4, 2382, 2013.
75.J. Liu, S. Cheng, M. Liao, M. Imura, A. Tanaka, H. Iwai, Y. Koide, Interfacial electronic band alignment of Ta2O5/hydrogen-terminated diamond heterojunction determined by X-ray, Diam. Relat. Mat. 38, 24, 2013.
76.S. P. Phivilay, A. A. Puretzky, K. Domen, I. E. Wachs, Nature of Catalytic Active Sites Present on the Surface of Advanced bulk Tantalum Mixed Oxide Photocatalysts, ACS Catal. 3, 2920, 2013.
77.N. G. Teixeira, A. Dias, R. L. Moreira, Raman scattering study of the high temperature phase transitions of NaTaO3, J. Eur. Ceram. Soc. 27, 3683, 2007.