簡易檢索 / 詳目顯示

研究生: 吳翊熙
Wu, YiSi
論文名稱: 氫化鉭酸鈉光觸媒在可見光分解水產氫之應用
Hydrogenated NaTaO3 as Photocatalysts for Hydrogen Generation from Water Splitting under Visible-Light Irradiation.
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 91
中文關鍵詞: 鉭酸鈉氫化分解水產氫鈣鈦礦
外文關鍵詞: NaTaO3, Hydrogenation, perovskite, Water splitting, Hydrogen generation.
相關次數: 點閱:79下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了發展能夠充分利用太陽光來進行分解水產氫的光觸媒,本研究對紫外光下擁有絕佳活性的鉭酸鈉進行氫化改質。然而鉭酸鈉是屬於最密堆積的鈣鈦礦結構(Closed-packed perovskite),要藉由氫化來扭曲其晶格其效果是有限的,於是在本研究當中,藉由在合成的過程中調整鈉在觸媒中的含量,並透過拉曼及X光繞射儀對結構進行鑑定,確保此方法能夠在不破壞鉭酸鈉的鈣鈦礦結構下導入鈉空缺(sodium vacancy),此鈉空缺能夠為整體結構提供額外的空間(extra space),在氫化的過程中導入更多的扭曲晶格,當扭曲晶格的數量提升時,更能在結構當中形成四價鉭離子存在,此四價鉭的存在能夠幫助光生電子在觸媒上的傳遞,有效提高電子電洞對分離的效果。由紫外-可見光吸收光譜的結果能夠明顯的看到在氫化之後的鉭酸鈉能夠在可見光區域內產生一條非常寬廣且具延續性的吸收峰。
    由光觸媒分解水的研究結果顯示氫化後的鉭酸鈉在可見光的照射下的確具有相當高的活性,鈉含量較低的鉭酸鈉在氫化之後更能進一步的提升光分解水產氫的效率,且在長時間的穩定性測試當中也表現出優異的效果。

    In order to develop an excellent and stable photocatalyst for water splitting under visible-light irradiation, we modified the NaTaO3 by using hydrogenation. However, NaTaO3 was difficult to introduce sufficient disorder lattices by hydrogenation because of its closed-packed perovskite structure.
    In the present work, we improved the hydrogenation effect of NaTaO3 by using a simple method, which decreased the ratio of Na to Ta as synthesizing NaTaO3 photocatalyst. According to the XRD and Raman spectrum results, this process couldn't destroy NaTaO3 perovskite structure. NaTaO3 which contented lower sodium would form sodium vacancy and provide extra space for introducing disorder lattices during hydrogenation. On the basis of water splitting result, hydrogenated NaTaO3 shows a outstanding photocatalytic activity and stability. Followed by decreasing the ratio of Na to Ta, the hydrogen evolution ability could get much higher.

    總目錄 中文摘要 .... I Abstract .... II 誌謝 .... IX 本文目錄 .... IX 表目錄 .... XIV 圖目錄 .... XV 本文目錄 第一章 緒論............ 1 1-1 前言............ 1 1-2 Fujishima-Honda effect........ 2 1-3 光觸媒原理.......... 4 1-3-1 光觸媒的催化原理.......... 4 1-3-2 光觸媒用於分解水之方式........ 8 1-3-3 光觸媒分解水之反應機制........ 11 1-4 犧牲試劑工作原理.......... 12 1-5 光觸媒分解水裝置.......... 13 1-6 研究動機............ 15 第二章 文獻回顧........... 16 2-1 鈣鈦礦(perovskite)結晶結構概述....... 16 2-2 金屬氧化物半導體光觸媒的發展...... 18 2-3 鹼金屬鉭酸鹽光觸媒於分解水下的研究...... 22 2-4 光觸媒的氫化(Hydrogenation)....... 25 2-4-1氫化介紹與對光觸媒之影響....... 25 2-4-2氫化所使用之反應器......... 28 2-5 如何增進光電化學轉換效率........ 30 2-6 半導體電化學理論簡介........ 33 2-6-1本質半導體與外質半導體....... 33 2-6-2費米能階(Fermi-level) ......... 35 第三章 實驗方法與儀器原理介紹....... 37 3-1 藥品、材料與儀器設備........ 37 3-1-1 藥品與材料.......... 37 3-1-2 儀器與實驗設備.......... 38 3-2 實驗步驟............ 39 3-2-1鉭酸鈉奈米顆粒之製備......... 39 3-2-2鉭酸鈉光觸媒的氫化......... 41 3-2-3白金(Pt)共觸媒之負載......... 41 3-3 懸浮式內照反應器與分解水系統...... 42 3-4 分析儀器原理簡介.......... 45 3-4-1 X光繞射分析......... 45 3-4-2 紫外-可見光分光光度計......... 48 3-4-3 穿透式電子顯微鏡.......... 50 3-4-4 掃描式電子顯微鏡.......... 53 3-4-5 X光光電子能譜......... 55 3-4-6 氣相層析儀.......... 56 第四章 結果與討論........... 58 4-1 XRD圖譜及結構分析......... 58 4-2 吸收光譜圖譜分析.......... 62 4-3 X光光電子能譜分析.......... 65 4-4 拉曼(Raman)光譜圖譜分析........ 68 4-5 高解析穿透式電子顯微鏡分析........ 70 4-6 光觸媒分解水產氫效果測試........ 74 4-7 光激發螢光光譜分析.......... 80 第五章 結論........... 82 參考文獻............. 83 表目錄 第一章 緒論 表1-1 Z-Scheme常見之Z-scheme 反應系統.... 10 第二章 文獻回顧 -表2-1 鹼金屬鉭酸鹽之分解水效率.. ...... 24 第四章 結果與討論 表4-1 將Ta4f能譜進行分峰拆解所得四價/五價鉭之比例... 67 表4-2 各氫化鉭酸鈉經由元素分析儀所測定之氫含量... 79 圖目錄 第一章 緒論 圖1-1 Fujishima-Honda Effect實驗裝置圖..... 3 圖1-2 Fujishima-Honda Effect實驗反應示意圖..... 3 圖1-3 光觸媒反應類型......... 4 圖1-4 常見的半導體光觸媒的能帶.... 6 圖1-5 半導體光觸媒分解水的原理... 7 圖1-6 光觸媒效率受塊材性質的影響.. 7 圖1-7 光分解水的兩步反應機制示意圖... 9 圖1-8 光觸媒反應程序... 11 圖1-9 犧牲試劑的工作原理..... 12 圖1-10 常見的光分解水反應器 (a)內照式反應器 (b)側照式反應器 (c)上照式反應器... 14 第二章 文獻回顧 圖2-1 理想的鈣鈦礦(perovskite)結構.. 17 圖2-2 太陽光波長與能量分佈圖.... 20 圖2-3 三種不同形式增加光吸收之半導體能隙示意圖 (a)過渡金屬摻入型光觸媒 (b)價帶控制型光觸媒..... 21 圖2-4 鹼金屬鉭酸鹽的相對能隙與鍵角.... 23 圖2-5 電子由光觸媒移動至共觸媒的示意圖..... 23 圖2-6 (A)為Core-shell 黑色二氧化鈦的示意圖 (B)圖左為白色的二氧化鈦,圖右則為氫氣處理後形成的黑色二樣氧化鈦........... 27 圖2-7 因導入扭曲晶格所產生之連續性的中間能帶... 28 圖2-8 因氧空缺所造成的中間能帶(Vo)..... 28 圖2-9 層狀鈣鈦礦結構剝層示意圖...... 32 圖2-10 電化學電位刻度和半導體能量軸之對照:最右邊軸的參 考點為電子在真空中能量為零的費米能階;中間的軸為 電化學電位軸,是以標準氫電極來定義的。EF、EC和EV 為半導體的費米能階、導帶和價帶的位置。 36 第三章 實驗方法與儀器原理介紹 圖3-1 溶膠凝膠法製備鉭酸鈉實驗流程圖..... 40 圖3-2 內照式可見光分解水反應器....... 43 圖3-3 內照式光分解水系統裝置圖....... 44 圖3-4 X光對原子散射圖......... 47 圖3-5 X光對晶體繞射圖......... 47 圖3-6 X光繞射分析儀(XRD)設備圖...... 47 圖3-7 紫外-可見光分光光度計(UV-Vis)設備圖..... 49 圖3-8 基本穿透式電子顯微鏡 (TEM) 之結構圖... 51 圖3-9 穿透式電子顯微鏡 (TEM) 圖...... 52 圖3-10 電子彈性與非彈性碰撞的結果示意圖.... 54 圖3-11 掃描式電子顯微鏡(SEM)設備圖..... 54 圖3-12 氣相層析儀(GC)外觀裝置圖...... 57 第四章 結果與討論 圖4-1 不同鈉含量的鉭酸鈉在氫化前後的X-ray 繞射圖... 59 圖4-2 鉭酸鈉鈣鈦礦結構示意圖(a)正常比例下之鉭酸鈉 (b) 藉由減少鈉的含量在結構中製造出的鈉空缺.. 61 圖4-3 不同鈉含量鉭的酸鈉觸媒於氫化之後的顏色變化... 62 圖 4-4 不同鈉含量鉭酸鈉觸媒氫化前後之吸收光譜.... 64 圖4-5 不同雙金屬比例的鉭酸鈉於氫化後之Ta4f XPS比較.. 66 圖4-6 不同雙金屬比例的鉭酸鈉於氫化後之Ta4f XPS 能譜經由高斯Fitting 後的波峰分析.... 67 圖4-7 不同鈉含量鉭酸鈉觸媒氫化前後之拉曼圖譜分析.. 69 圖4-8 氫化前後鉭酸鈉的HRTEM 圖..... 71 圖4-9 氫化前後鉭酸鈉的HR TEM 外觀圖.... 73 圖4-10 不同雙金屬配比之鉭酸鈉於氫化後在可見光下持續照光24小時所得之氫氣累積量.... 75 圖4-11 (a)不同金屬配比之氫化鉭酸鈉的產氫速率 (b)H-Na(0.8)TaO3光觸媒穩定性測試... 77 圖4-12 不同金屬配比之鉭酸鈉於360nm激發波長下的放光行為 81

    1.張立群譯,“光清淨革命-活躍的二氧化鈦光觸媒”,協志工業叢書印行,2000.
    2.A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature. 238, 37, 1972.
    3.A. Kudo, H. Kato, I. Tsuji, Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting , Chem. Lett. 33, 1534, 2004.
    4.A. Kudo, Photocatalyst materials for water splitting , Catal. Surv. Asia, 31, 7, 2003.
    5.A. Mills, S. L. Hnute, J. An overview of semiconductor photocatalysis , J. Photochem. Photobiol. A:Chem. 108, 1,1997.
    6.M. Grätzel, Photoelectrochemical cells, Nature. 414, 338,2001.
    7.A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38, 253, 2009.
    8.F. E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chem. Mater. 20, 35, 2008.
    9.K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation, Chem. Commun. 24,16, 2001.
    10.H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation, Chem. Lett. 33, 13, 48, 2004.
    11.R. Abe, K. Sayama, H. Sugihara, Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3−/I−, J. Phys. Chem. B. 109, 16052, 2005.
    12.A. Kudo, Development of photocatalyst materials for water splitting, Inter. J. Hydrogen Energy. 31, 197, 2006.
    13.M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production, J. Thomas, Catal. Today. 122, 51, 2007.
    14.Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, H. Kato, Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts, J. Solid State Chem. 177, 4205, 2004.
    15.N. Nian, C. C. Hu, H. Teng, Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination, Inter. J. Hydrogen Ener. 33, 2897, 2008.
    16.Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, K. Ozawa, Electrochemistry of Titanate(IV) Layered Oxides, J. Phys. Chem. B. 105, 10893, 2001.
    17.H. Kato, A. kudo, Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K), J. Phys. Chem. B. 105, 4285, 2001.
    18.T. Ishihara, H. Nishiguchi, K. Fukamachi, Y. Takita, Effects of Acceptor Doping to KTaO3 on Photocatalytic Decomposition of Pure H2O, J. Phys. Chem. B. 103, 1, 1999.
    19.A. Kubacka, M. Fernandez-García, G. Colon, Advanced Nanoarchitectures for Solar Photocatalytic Applications, Chem. Rev. 112, 1555, 2012.
    20.W. H. Lin, C. Cheng, C. C. Hu, H. Teng, NaTaO3 photocatalysts of different crystalline structures for water splitting into H2 and O2 Appl. Phys. Lett. 89, 211904, 2006.
    21.C. C. Hu, Y. L. Lee, H. Teng, Efficient water splitting over Na1-xKxTaO3 photocatalysts with cubic perovskite structure, J. Mater. Chem. 21, 3824, 2011.
    22.M. Higashi, R. Abe, K. Teramura, T.Takato, B. Ohtani, K. Domen, Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3−/I- shuttle redox mediator Chem. Phys. Lett. 452, 120, 2008.
    23.R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation J. Phys. Chem. B. 108, 8992, 2004.
    24.H. Kato, A. Kudo, Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium, J. Phys. Chem. B. 106, 5029, 2002.
    25.T. Ishii, H. Kato, A. Kudo, H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation, J. photochem. photobiol. A, 163, 181, 2004.
    26.K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, Photocatalytic Overall Water Splitting on Gallium Nitride Powder, Bull. Chem. Soc. Jpn. 80, 1004, 2007.
    27.M. Higashi, K. Domen, R. Abe, Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation, Energy Environ. Sci. 4, 4138, 2011.
    28.H. Kato, A. Kudo, Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts , Catal. Today, 78, 561, 2003.
    29.M. Wiegel, W. Middel, G. Blasse, Influence of ns2 ions on the luminescence of niobates and tantalates, J. Mater. Chem. 5, 981, 1995.
    30.A. M. Srivastava, J. F. Ackerman, On the Luminescence of Ba5M4O15 (M=Ta5+, Nb5+), J. Solid State Chem. 134, 187, 1997.
    31.A. Kudo, Luminescent Properties of Rare-Earth-Metal Ion-Doped KLaNb2O7 with Layered Perovskite Structures, Chem. Mater. 9, 664, 1997.
    32.A. Kudo, E. Kaneko, Photoluminescence of layered perovskite oxides with triple-octahedra slabs containing titanium and niobium, J. Mater. Sci. Lett. 16, 224, 1997.
    33.T. Takata, G. Hitoki, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride, Res. Chem. Intermed. 33,13, 2007.
    34.K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis, J. Photochem. Photobiol., A, 148, 71, 2002.
    35.R. Abe, T. Takata, H. Sugihara, K. Domen, Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3−/I− shuttle redox mediator, Chem. Commun. 3829, 2005.
    36.A. Iwase, H. Kato, A. Kudo, The Effect of Alkaline Earth Metal Ion Dopants on Photocatalytic water splitting by NaTaO3 powder. ChemSusChem. 2, 873, 2009.
    37.M. A. Pena, J. L. G. Fierro, Chemical Structures and Performance of Perovskite Oxides, Chem. Rev. 101,1981, 2001.
    38.H. Kato, A. Kudo, Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3(A = Li, Na, and K), J. Phys. Chem. B, 105, 4285, 2001.
    39.M. Liu, R. Ma, M. Fang, F. D. Li, S. H. Kang, H. M. Wang, G. T. Fei, L. D. Zhang, Structural, optical, and adsorptive properties of tantalates by a facile hydrothermal method, J. Appl. Phys. 114, 123516, 2013.
    40.A. Kudo, H. Kato, Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting,Chem. Phys. Lett. 331, 373, 2000.
    41.H. Kato, K. Asakura, A. Kudo, Highly Efficient Water Spliiting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure, J. Am. Chem. Soc. 125, 3082, 2003.
    42.H. Kato, A. Kudo, Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts, Catal. Lett. 21, 3824, 2011.
    43.C.C. Hu, H. Teng, Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting, J. Catal. 272,1, 2010.
    44.H.W. Kang, S.B. Park, Water photolysis by NaTaO3-C composite prepared by spray pyrolysis, Adv. Powder Technol. 21,106, 2010.
    45.A. B. Ellis, S. W. Kaiser and M. S. Wrighton, J. Phys. Chem. 1976,80,1325.
    46.J. Nozik, Photoelectrochemistry : Applications to solar Energy Conversion, Annu. Rev. Phys. Chem. 29, 189, 1978.
    47.X. Chen, L. Liu, Peter Y. Yu, Samuel S. Mao, Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, Science. 331, 11, 2011.
    48.A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. D. Santo, Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles, J. Am. Chem. Soc. 134, 7600, 2012.
    49.G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J. Z. Zhang, Y. Li, Hydrogen-treated WO3 nanoflakes show enhanced photostability, Energy Environ. Sci. 5, 6180, 2012.
    50.G. Liu, J. Han, X. Zhou, L. Huang, F. Zhang, X. Wang, C. Ding, X. Zheng, H. Han, C. Li, Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen, J. Catal. 307, 148, 2013.
    51.T. Leshuk, R. Parviz, P. Everett, H. Krishnakumar, R. A. Varin, F. Gu, Photocatalytic Activity of Hydrogenated TiO2, ACS Appl. Mater. Interfaces. 5, 1892, 2013.
    52.H. O. Finklea, Semiconductor Electrode;Elsevier, New York, 1988.
    53.R. Memming, Semiconductor Electrochemistry;Wiley-VCH, New York, 2001.
    54.李佩珊,“孔洞性三氧化鎢薄膜光分解水電極之製備與研究”,國立成功大學化學工程研究所碩士論文, 2007.
    55.T. Leshuk, S. Linley, F. Gu, HYDROGENATION PROCESSING OF TiO2 NANOPARTICLES, Can. J. Chem. Eng. 91, 799, 2013.
    56.W. Wang, Y. Ni, C. Lu, Z. Xu, Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N–F co-doped TiO2 nanosheets Appl. Surf. Sci. 290, 125, 2014.
    57.G. Wang, H. Wang, Y. Ling, Y. Tang, X.Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting, Nano Lett. 11, 3026, 2011.
    58.K. Sayama, H. Arakawa, Effect of carbonate salt addition on the photocatalyticdecomposition of liquid water over Pt–TiO2 catalyst, J. Chem. Soc. Farady Trans. 93, 1647, 1997.
    59.K. P. Wang, H. S. Teng, Structure-intact TiO2 nanoparticles for efficient electron transport in dye-sensitized solar cells, Appl. Phys. Lett. 91, 173102, 2007.
    60.Y. Okamoto, S. Ida, J. Hyodo, H. Hagiwara, T. Ishihara, Synthesis and Photocatalytic Activity of Rhodium-Doped Calcium Niobate Nanosheets for Hydrogen Production from a Water/Methanol System without Cocatalyst Loading, J. Am. Chem. Soc. 133, 18034, 2011.
    61.S. Ida, Y. Okamoto, M. Matsuka, H. Hagiwara, T. Ishihara, Preparation of Tantalum-Based Oxynitride Nanosheets by Exfoliation of a Layered Oxynitride, CsCa2Ta3O10−xNy, and their Photocatalytic Activity, J. Am. Chem. Soc. 134, 15773, 2012.
    62.Y. Matsumoto, M. Koinuma, Y. Iwanaga, T. Sato, S. Ida, N Doping of Oxide Nanosheets, J. Am. Chem. Soc. 131, 6644, 2009.
    63.S. Ida, C. Ogata, U. Unal, K. Izawa, T. Inoue, O. Altuntasoglu, Y. Matsumoto, Preparation of a Blue Luminescent Nanosheet Derived from Layered Perovskite Bi2SrTa2O9, J. Am. Chem. Soc. 129, 8956, 2007.
    64.B. D. Cullity, S. R. Stock, “Elements of X-ray Diffraction 3rd ed ”, Prentice Hall, 2001.
    65.M. Yan, F. Chem. J. Zhang, M. Anpo, “Preparation of controllable crystalline titania and study on the photocatalytic properties”, J. Phys. Chem. B, 109, 8673,2005.
    66.D. G. Barton, M. Shtein, R. D. Wilson, S. L. Solied, E. Iglesia, “Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures”, J. Phys. Chem. B, 103, 630, 1999.
    67.蔡承達,“鎵化合物光觸媒在分解水產氧之應用”,國立成功大學化學工程研究所碩士論文,2012.
    68.C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-Ray photoelectronspectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979.
    69.陳俊吉,“金屬氧化物半導體在可見光分解水製氫之研究”,國立成功大學化學工程學系碩士論文,2005.
    70.T. Yu, C. G. Jin, H. Y. Zhang, L. J. Zhuge ,Z. F. Wu, X. M. Wu, Z. C. Feng, Effect of Ta incorporation on the microstructure, electrical and optical properties of Hf1-xTaxO high-k film prepared by dual ion beam sputtering deposition, Vacuum. 92, 58, 2013.
    71.Y. Lee, T. Watanabe, T. Takata, J. N. Konda, M. Hara, M. Yoshimura, K. Domen, Preparation and Characterization of Sodium Tantalate Thin Films by Hydrothermal-Electrochemical Synthesis, Chem. Mater. 17, 2422, 2005.
    72.E. Atanassova, G. Tyuliev, A. Paskaleva, D. Spassov, K. Kostov, XPS study of N2 annealing effect on thermal Ta2O5 layers on Si, Appl. Surf. Sci. 225, 86, 2004.
    73.E. Atanassova, D. Spassov, X-ray photoelectron spectroscopy of thermal thin Ta2O5 films on Si, Appl. Surf. Sci. 135, 71, 1998.
    74.G.S. Park, Y. B. Kim, S. Y. Park, X. S. Li, S. Heo, M. J. Lee, M. Chang, J. H. Kwon, M. Kim, U. I. Chung, R. Dittmann, R. Waser, K. Kim, In situ observation of filamentary conducting channels in an asymmetric Ta2O5-x/TaO2-x bilayer structure, Nat. Commun. 4, 2382, 2013.
    75.J. Liu, S. Cheng, M. Liao, M. Imura, A. Tanaka, H. Iwai, Y. Koide, Interfacial electronic band alignment of Ta2O5/hydrogen-terminated diamond heterojunction determined by X-ray, Diam. Relat. Mat. 38, 24, 2013.
    76.S. P. Phivilay, A. A. Puretzky, K. Domen, I. E. Wachs, Nature of Catalytic Active Sites Present on the Surface of Advanced bulk Tantalum Mixed Oxide Photocatalysts, ACS Catal. 3, 2920, 2013.
    77.N. G. Teixeira, A. Dias, R. L. Moreira, Raman scattering study of the high temperature phase transitions of NaTaO3, J. Eur. Ceram. Soc. 27, 3683, 2007.

    下載圖示 校內:2019-07-31公開
    校外:2019-07-31公開
    QR CODE