簡易檢索 / 詳目顯示

研究生: 朱柏彥
Chu, Po-yen
論文名稱: 二次粒料應用於熱拌瀝青混凝土之評估
Evaluation of Secondary Aggregate in Hot-Mix Asphalt Mixtures
指導教授: 蕭志銘
Shiau, Jih-Min
陳建旭
Chen, Jian-shiuh
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 176
中文關鍵詞: 過度預熱回收料未預熱回收料底碴熟化二次粒料
外文關鍵詞: primary aggregate, RAP, secondary aggregate, non-preheated, overheated, MSWBA
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瀝青混凝土是目前公路系統最常用的鋪面材料,砂石資源的短缺造成主要粒料(primary aggregate)嚴重匱乏,國內公路工程界對使用二次粒料(Secondary aggregate)存有強烈需求,二次粒料以回收料和底碴為大宗項目,二次粒料與傳統粒料具類似性質,若能回收再利用,不僅可以減少廢棄物掩埋的問題,也可以保護環境、創造優質生活空間。
    在底碴方面,熟化時間對底碴物理性質沒有明確影響,但鈣元素與氯離子含量會隨著熟化時間增加而降低;此外,觀察熟化前後底碴表面結構變化,可發現底碴經過熟化後,經水化、碳酸作用及氧化作用後,水化物能提高骨材介面鍵結強度、提昇耐久性,因此有助於提升底碴的穩定性。底碴瀝青混凝土試驗顯示底碴添加含量在45%以下時,瀝青混凝土工程性質隨添加比例增加而下降,唯有殘餘強度隨熟化時間增加而相對提高。毒性特性溶出試驗顯示重金屬溶出符合規範標準,對環境安全性不會造成危害。
    在回收料部分,分別加熱200℃與250℃,經過30、60和90分鐘後,瀝青混凝土成效試驗不如一般再生瀝青混凝土,此時回收料即稱為過度預熱。當回收料過度預熱時,會導致回收料瀝青嚴重老化,甚至碳化、剝落,無法再提供黏結力。因此添加過度預熱回收料之再生瀝青混凝土將隨添加比例越高、老化情況越嚴重,工程性質也將越差,建議應避免使用過度預熱回收料。
    添加未預熱回收料和過短的拌合時間將使試體無法達到足夠的溫度均勻性。回收料未預熱時,建議含水量不宜超過2%,以免影響拌合料的平均溫度。當新鮮料加熱180℃,未預熱回收料含量過高或拌合時間不足時,再生瀝青混凝土抗水侵害能力將明顯下降,因此未預熱回收料建議添加量為40%以內。

    With a greater usage in hot-mix asphalt for roadway pavements, the lack of resources of primary aggregate (or virgin aggregate) has become a critical issue. Thus, it’s a great urgency to find a substitute aggregate. Secondary aggregate (or waste aggregate), such as reclaimed asphalt pavement (RAP) and municipal solid waste bottom ash (MSWBA), is material that has been used previously and recycled or recovered. Therefore, it’s necessary to determine the feasibility of using these materials. An evaluation in this paper was conducted to investigate the performance of asphalt mixture incorporating secondary aggregate.
    For MSWBA, the results showed that bottom ash is a light-weight, porous, and absorptive material, and the concentration of Ca and Cl decrease with increasing aging of bottom ash. There was an increase of about 0.79% in design asphalt content for each 10% increment in MSWBA. If the percentage of bottom ash introduced into an asphalt mixture remains less than 45%, the performance of asphalt mixtures could increase with increasing aging of bottom ash, but decrease with increasing percentage of bottom ash utilized. As for the environmental safety of the use of bottom ash, the TCLP dada indicated that the concentrations of the heavy metals (Cd, Cr, Cu and Pb) satisfied all the requirements of the Environmental Protection Administration for bottom ash assessment.
    For RAP, after heating on 200℃ and 250℃ by 30, 60 and 90 minutes, the viscosity of aged asphalt extracted by reclaimed asphalt pavement acutely increased. Of all experiments, coke could found when RAP heated on 250℃ and 90 minutes. When the performance of asphalt mixture containing RAP would not perform as well as recycled asphalt concrete (RAC), these RAP were called overheated RAP. Data indicated that overheated RAP should avoid to be reused in asphalt mixtures.
    On the other hand, non-preheated RAP also used to investigate the feasibility added in asphalt mixture. Results showed that increasing percentage of non-preheated RAP and shortage of mixing time would reduce the temperature uniformity of asphalt concrete. When virgin aggregate was preheated with 180℃, the moisture content of non-preheated RAP should not exceed the limitation of 2%. Finally, results indicated that limitation of using of non-preheated RAP could be restricted by 40%.

    目錄 I 表目錄 V 圖目錄 VII 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-6 1.4 研究範圍 1-6 第二章 文獻回顧 2-1 2.1 焚化底碴來源與特性 2-1 2.1.1 焚化底碴來源 2-1 2.1.2焚化底碴物理特性 2-4 2.1.3 焚化底碴化學特性 2-6 2.2 底碴的前處理技術 2-8 2.2.1 底碴熟化目的 2-10 2.2.2 底碴重金屬溶出機制 2-12 2.2.3 熟化抑止重金屬溶出機制 2-15 2.2.4 底碴熟化工程技術 2-16 2.3 國內外焚化底碴應用狀況 2-19 2.3.1 國外應用現況 2-19 2.3.2 國內應用現況 2-21 2.4 再生瀝青混凝土 2-22 2.4.1 瀝青組成成份 2-22 2.4.2 瀝青老化行為 2-25 第三章 研究計畫 3-1 3.1 試驗流程 3-1 3.2 試驗材料 3-6 3.2.1 瀝青 3-6 3.2.2 刨除回收料與焚化底碴 3-6 3.3 試驗方法與設備 3-8 3.3.1粒料試驗 3-8 3.3.1.1 X光繞射分析(XRD) 3-8 3.3.1.2 X光螢光分析元素組成(XRF) 3-9 3.3.1.3 感應耦合電漿原子發射光譜分析儀(ICP-AES) 3-9 3.3.1.4 掃瞄式電子顯微鏡(SEM) 3-10 3.3.1.5 氫離子濃度指數(pH值) 3-11 3.3.1.6 水溶性氯離子試驗 3-12 3.3.1.7 毒性特性溶出試驗(TCLP) 3-13 3.3.1.8 回脹試驗 3-14 3.3.2 瀝青混凝土試驗 3-15 3.3.2.1 間接張力試驗 3-15 3.3.2.2 浸水剝脫試驗 3-15 3.3.2.3 吸收能 3-16 3.3.2.4 回彈模數試驗 3-17 3.3.2.5 紅外線測溫儀分析 3-18 3.3.2.6 多重毒性特性溶出試驗(M-TCLP) 3-19 3.3.2.7 瀝青薄膜厚度 3-20 第四章 焚化爐底碴應用於瀝青混凝土之影響 4-1 4.1 焚化爐底碴基本性質 4-1 4.1.1 底碴物理性質 4-1 4.1.2 底碴微觀性質 4-3 4.1.3 底碴化學性質 4-10 4.2 熟化對於底碴環境安全性之影響 4-13 4.3 馬歇爾配合設計 4-18 4.4 底碴瀝青混凝土特性 4-23 4.4.1 工程性質分析 4-23 4.4.2環境穩定性評估 4-28 第五章 過度預熱回收料對瀝青混凝土之影響 5-1 5.1 定義再再生瀝青混凝土 5-1 5.1.1 瀝青長期老化行為之推估 5-1 5.1.2 再再生瀝青回收料之推估 5-4 5.2 微區能量元素分析 5-6 5.3 掃瞄式電子顯微鏡分析 5-10 5.3.1 回收料 5-10 5.3.2 再生瀝青混凝土 5-13 5.4 工程性質分析 5-19 第六章 未預熱回收料對瀝青混凝土之影響 6-1 6.1 乾拌時間分析 6-1 6.2 含水量分析 6-10 6.3 濕拌時間分析 6-12 6.4 配合設計與工程特性 6-14 第七章 結論與建議 7-1 7.1 結論 7-1 7.1.1 焚化爐底碴 7-1 7.1.2 過度預熱回收料 7-2 7.1.3 未預熱回收料 7-3 7.2 建議 7-4 參考文獻

    交通部統計處(2005). 「中華民國九十四年交通統計要覽」,台南。
    行政院環保署(2003).「廢棄物焚化灰渣材料化技術研究專案計畫期末報告」。
    行政院環境保護署(2004).93年度垃圾焚化飛灰資源化處理再利用技術論壇。
    林育丞(2003).「垃圾焚化爐底碴與水泥拌合後之潛在問題探討」,國立中央大學土木工程研究所碩士論文。
    林志棟、鄭仁崇、陳韋伶、劉耀斌(2004).「焚化底渣運用於瀝青混凝土面層之研究」,第六屆鋪面材料再生學術研討會,第E19-1~8頁。
    林志棟、陳韋伶、童文彥、王叡懋、李振卿(2005).「不同貯存時間對焚化底渣物化特性影響之研究」,第十三屆鋪面工程學術研討會,第221-230頁。
    李王永泉、施明倫譯(1998).「固體廢棄物管理」,美商麥格羅.希爾國際股份有限公司,滄海書局。
    李釗、江少鋒、郭文田(1996).「都市垃圾焚化灰渣作為混凝土細骨材之可行性研究」,一般廢棄物焚化灰渣資源化技術與實務研討會,第91-112頁。
    李釗、江少鋒、郭文田(1997).「垃圾焚化爐底碴作為混凝土細骨材之可行性研究」,中國環境工程學刊,第七卷,第三期,第289~296頁。
    邱垂德、黃錦明、高永駿、蘇育立、吳南明、李公哲(2005).「含焚化底渣瀝青混凝土之工程與環境性質研究」,第十三屆鋪面工程學術研討會,第209-220頁。
    吳慶龍(2000).「焚化底灰粗粒徑替代道路基層材料之可行性探討」,私立淡江大學水資源及環境工程學系碩士論文。
    夏賢統,「中山高速公路現地鑽心試體與刨除材料行為之研究」,碩士論文,國立成功大學土木工程研究所,臺南(1992)。
    郭同宇、蘇育立、邱垂徳(2004).「廢棄物焚化底渣應用於瀝青混凝土之可行性研究」,第六屆鋪面材料再生學術研討會,第E15-1~8頁。
    葉祥春(2003).「垃圾焚化爐底碴應用於道路基底層之研究」,國立成功大學土木工程學系碩士論文。
    詹炯淵(2001).「垃圾焚化飛灰管理對策之研究」,國立台灣大學環境工程學研究所碩士論文。
    張祖恩(1996).「台灣地區都市垃圾焚化灰渣物化組成與溶出特性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會,第227-246頁。
    Aberg, A., Kumpieme, J., and Ecke, H. (2006). “Evaluation and Prediction of Emissions from a Road Build with Bottom Ash from Municipal Solid Waste Incineration,” Science Total Environment, Vol. 355, pp.1-12.
    American Association of Highway and Transportation Officials, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Report No.1-37A, Washington, D.C. (2004).
    Aziz, M.A. and Pamaswamy, S.D. (1992). “Incinerator Residue for Roads,” Geotechnical Testing Journal, Vol.15, pp.300-304.

    Bishara, S.W. and McReynolds, R.L. (1990). “The Use of HPGPC with UV Detection for Determining the MSD of Asphalt Cement after Quantitative Correction for Molar Absorptiveity Variation and Saturated Oils,” Transportation Research Record 1269, pp. 40-47.
    Branthaver, J.F., Petersen, J.C., Robertson, R.E., Duvall, J.J., Kim, S.S., Harmaberger, P.M., Mill T., Ensley, E.K., Barbour, F.A. and Schabron, J.F. (1993). “Binder Characterization and Evaluation,” Report No. SHRP-A-368.
    Brule, B., Ramond, G., and Such, C. (1986). “Relationship between Composition, Structure and Properties of Road Asphalts: State of Research at the French Public Works Central Laboratory,” Transportation Research Record 1096, pp. 24-34.
    Buchholz, B.A. and Landsberg, S. (1995). “Leaching Dynamics Studies of Municipal Solid Waste Incinerator Ash,” Air & Waste Management Association, Vol.45, p.579.
    Chimenos, J.M., Fernandez, A.I., Nadal, R. and Espiell, F. (2000). “Short Term Natural Weathering of MSWI Bottom Ash,” Journal of Hazardous Materials, Vol.79, pp.287–299.
    Chiu, C.T., Tia, M., Ruth, B.E. and Page, G.C. (1994). “Investigation of Laboratory Aging Processes of Asphalt Binders Used in Florida,” Transportation Research Record 1436, pp. 60-70.
    Collins, R.J. and Miller, R.H. (1977). “Technology for Use of Incinerator Residue as Highway Material,” Federal Highway Administration, Report No.FHWA/RD-77/151.
    Chesner, W. H., Collins, R. J. and MacKay, M. H. (1998). “Users Guidelines for Waste and By Product Materials in Pavement Construction,” Report No.FHWA-RD-97-148.
    Culley, R.W. (1969). “Relationships between Hardening of Asphalt Cements and Transverse Cracking of Pavements in Saskatchewan,” Journal of the Association of Asphalt Paving Technologists, Vol. 38, pp. 629-659.
    Chimenos, J. M., Segarra, M., Fernandez, M. A., and Espiell, F. (1999). “Characterization of the Bottom Ash in Municipal Solid Waste Incinerator,” Journal of Hazardous Materials, Vol. 64, pp.211-222.
    Dutre, V. and Vandecasteele, C. (1996). “An Evaluation of the Solidification/Stabilization of Industrial Arsenic Containing Waste Using Extraction and Semi-Dynamic Leach Tests,“ Waste Management, Vol.16, pp.625-631.
    Fernandez, M.A., Martinez, L., Segareia, M., Garcia, C.J. and Espiell, F. (1992). “Behavior of Heavy Metal in Combustion Gases of Urban Waste Incinerators,” Environmental Science and Technology, Vol.26, pp.1040-1047.
    Federal Highway Administration (1998). “User Guidelines for Waste and By Product Material in Pavement Construction,” RD-97-148, pp.10-1-10-29.
    Forestier, L.L. and Libourel, G. (1998). “Characterization of Fuel Gas Residues from Municipal Solid Waste Combustors,” Envirimental Science and Technology, Vol.32, pp.2250-2256.
    Forteza, R., Far, M., Segui, C., and Cerda, V. (2004). “Characterization of Bottom Ash in Municipal Solid Waste Incinerators for its Use in Road Base,” Waste Management, Vol. 24, pp.899-909.
    Garrick, N.W. and Wood, L.E. (1986). “Relationship between HP-GPC Data and the Rheological Properties of Asphalts,” Transportation Research Board 1228, pp. 35-41.
    Gardiner, M.S. and Wagner, C. (1999). “Use of Reclaimed Asphalt Pavement in Superpave Hot-Mix Asphalt Application,” Transportation Research Record 1681, pp.1~9.
    Gress, D., Zhang, X., Tarr, S., Pazienza, I. and Eighmy, T.T. (1992). “The Physical and Environmental Properties of Asphalt-Amended Bottom Ash,” Transportation Research Record 1345, pp.10-18.
    Haynes, J. and Ledbetter, W.B. (1975). “Incinerator Residue in Bituminous Base Construction Federal Highway Administration,” Report No.FHWA/RD-76-12.
    Hadipour, K., and Anderson, K.O. (1988). “An Evaluation of Permanent Deformation and Low Temperature Characteristics of Some Recycled Asphalt Concrete Mixture,’’ Journal of the Association of Asphalt Paving Technologists, Vol.57, pp.615-645.
    Hadley, D.W. (1961). “Alkali Reactivity of Carbonate Rock-Expansion and Dedolomitization,” HRB Proceeding 40, pp.462~474.
    Hobbs, D.W. (1988). “Alkali-Silica Reaction in Concrete,” Thomas, Telford, London.

    Huo, K.F., Zhai, Y.C., Liao, K.J., Yang, P., Yan, F. and Wei, Y. (2001). “A Study on Change of Family Composition and Properties of Liaoshu Paving Asphalt on Aging,” Petroleum Science and Technology, Vol.19, pp.651-660.
    Johnson, C.A., Kersten, M., Ziegler, F. and Moor, H.C. (1996). “Leaching Behavior and Solubility –Controlling Solid Phases of Heavy Metals in Municipal Solid Phases of Heavy Metals in Municipal Solid Waste Incinerator Ash,” Waste Management, Vol.16, pp.129-134.
    Kandhal, P.S. (1992). “Waste Materials in Hot Mix Asphalt-An Overview,” National Center for Asphalt Technology, No.92-6.
    Kandhal, P.S., Rao, S.S., Watson, D.E. and Young, B. (1995). “Performance of Recycled Hot Mix Asphalt Mixtures,” NCAT Report No.95-1.
    Kirby, C. S., and Rimstidt, J. D. (1993). “Mineralogy and Surface Properties of Municipal Solid Waste Ash,” Environment Science and Technology, Vol. 27, pp.650-652.
    Kida, A., Noma, Y., and Imada T. (1996). ”Chemical Speciation and Leaching Properties of Elements in Municipal Incinerator Ashes,” Waste Management, Vol. 16, pp.527- 536.
    Kosson, D.S., Van Der Sloot, H.A. and Eighmy, T.T. (1996). “An Approach for Estimation of Contaminant Release During Utilization and Disposal of Municipal Waste Combustion Residues,” Journal of Hazardous Materials, Vol.47, pp.43-75.

    Korzun, E.A. and Heck, H.H. (1990). “Source and Fates of Lead and Cadminm in Municipal Solid Waste,” Journal of Air Waste & Management Association, Vol.40, pp.432-438.
    Kosson, D.S., Van Der Sloot, H.A., Sanchez, F. & Garrabrants, A.C. (2002). “An Integrated Framework for Evaluating Leaching in Waste Management and Utilization of Secondary Materials,” Environmental Engineering Science, Vol. 19, No. 3, pp.159-204.
    Lapa, N., Barbosa, R., Morais, J., Mendes, B., Mehu, J. and Santos Oliveira, J. F. (2002). ” Ecotoxicological Assessment of Leachates from MSWI Bottom Ashes,” Waste Management, Vol.22, pp.583-593.
    Law, S. L. and Gordon, G. E. (1979). “Sources of Metals in Municipal Incinerator Emission,” Environmental Science and Technology, Vol.13, pp.432-438.
    Little, D. H., Homlmgreen, J. R. and Epps, J. A. (1981). “Effect of Recycling Agents on the Structural Performance of Recyeled Asphalt Concrete Materials,” Journal of the Association of Asphalt Paving Technologists, Vol.50, pp.32-63.
    Liu, M., Ferry, M.A., Davison, R,R., Glover, C.J. and Bullin, J.A. (1998). “Oxygen Uptake as Correlated to Carbonyl Growth in Aged Asphalts and Asphalt Corbett Fractions,” Industrial & Engineering Chemistry Research, Vol. 37, pp. 4669-4674.
    Lu, X. and Isacsson, U. (2002). “Effect of Ageing on Bitumen Chemistry and Rheology,” Construction and Building Materials, Vol. 16, pp. 15-22.
    Mastrofini, D. and Scarsella, M. (2000). “The Application of Rheology to the Evaluation of Bitumen Ageing,” Fuel, Vol. 79, pp. 1005-1015.
    Moreselli, L., Zappoil, S. and Militerno, S. (1993). “The Presence and Distribution of Heavy Metal in Municipal solid Waste Incinerators,” Toxicological and Environmental Chemistry, Vol.37, pp.139-145.
    Meima, J. A. and Comans, R. N. J. ( 1997). “Geochemical Modeling of Weathering Reactions in Municipal Solid Waste Incinerator Bottom Ash,” Environmental Science & Technology, Vol.31, pp.1269-1276.
    Meima, J.A. & Comans, R.N.J. (1997). “Overview of Geochemical Processes Controlling Leaching Characteristics of MSWI Bottom Ash,” Proceeding of the WASCON '97 Conference, pp.447-457.
    Mirza, M.W. and Witczak, M.W. (1995). “Development of a Global Aging System for Short and Long Term Aging of Asphalt Cements,” Journal of the Association of Asphalt Paving Technologists, Vol. 64, pp. 393-430.
    Mulholland, J.A. and Sarofim, A.F. (1991). “Mechanisms of Inorganic Particle Formation During Suspension Heating of Simulated Aqueous Wastes,” Environmental Science and Technology, Vol.25, pp.268-274.
    Norman, W., Garrick and Chan, K.L. (1995). “Evaluation of Domestic Incinerator Ash for Use as Aggregate in Asphalt Concrete,” Transportation Research Record 1418, pp.30-34.

    Noureldin, A.S. and Wood, L.E. (1990). “Variations in Molecular Size Distribution of Virgin and Recycled Asphalt Binders Associated with Aging,” Transportation Research Record 1228, pp. 191-197.
    Ogunro, V.O., Inyang, H. I., Hooper, F., Young, D. and Otukar, A. (2004). “Gradation Control of Bottom Ash Aggregate in Superpave Bituminous Mixes,” Journal of Materials in Civil Engineering, Vol. 16, pp.604-613.
    Ohio Department of Transportation (2002). “Supplemental Specification 874 Ultrathin Bonded Asphalt Concrete,” Ohio.
    Pandeline, D.A., Cosentino, P.J., Kalajian, E.H. and Chavez, M.F. (1997). “Shear and Deformation Characteristic of Municipal Waste Combustor Bottom Ash for Highway Application,” Transportation Research Record 1577, pp.53-61.
    Pfrang Stotz, G. and Reichelt, T. (2000). “Municipal Solid Waste Combustion Ash : Characteristics and the Use in Road Construction,” Waste Management Series, Vol.1, pp.235-246.
    Roberts, F.J., Kandhal, P.S., Brown, E.R., Lee Dah-Yinn and Kennedy, T.W. (1985). Hot Mix Asphalt Materials, Mixture Design, and Construction, National Center for Asphalt Technology, NAPA Education Foundation, Maryland.
    Rostler, F.S. and Sternberg, H.W. (1949). “Compounding Rubber with Petroleum Products,” Industrial and Engineering Chemistry, Vol. 41.

    Rostler, F.S. and White, R.M. (1962). “Composition and Change in Composition of Highway Asphalts, 85-100 Penetration Grade,” Journal of the Association of Asphalt Paving Technologists, Vol. 31.
    Sawell, S.E., Bridle, T.R. and Constsble, T.W. (1988). “Heavy Metal Leachability from Solid Waste Incinerator Ashes,” Waste Management & Research, Vol.8, pp.227-238.
    Shell Bitumen (1990). The Shell Bitumen Handbook, Surry, U.K..
    Sondag, M. S., Chadbourn, B. A. and Drescher, A. (2002). Investigation of Recycled Asphalt Pavement (RAP) Mixtures Final Report, Minnesota Department of Transportation, Virginia.
    Stastna, J., Zanzotto, L., and Vacin, O.J. (2003). “Viscosity Function in Polymer-Modified Asphalts,” Journal of Colloid and Interface Science, Vol. 259, pp. 200-207.
    Steketee, J.J., Duzijn, R.F. and Born, J.G.P. (1997). “Quality Improvement of MSWI Bottom Ash by Enchanced Aging,” Studies in Environmental Science, Vol.71, pp.13-23.
    Shimaoka, T. & Sakita, S. (2004). “Pretreatment of Bottom Ash for Reuse of Construction Materials,” International Conference on Resource Recovery of Incineration Ash, pp.1-15.
    The Asphalt Institute (1994). “Mix Design Methods for Asphalt Concrete,” Manual Series, No. 2.
    Thompson, G. (2003). Determining Asphalt Content for Recycled Asphalt Pavement (RAP) Materials, Federal Highway Administration Final Report, Project 304-221.
    U.S. Department of Transportation (1997). “User Guidelines for Waste and By-Product Materials in Pavement Construction,” pp.10-1-10-26.
    Van der Sloot, H.A. (1996). “Present Status of Waste Management in Netherlands,” Waste Management, Vol.16, pp.375-383.
    Wiles, C. C. (1996). “Municipal Solid Waste Combustion Ash :
    State-of-the-Knowledge,” Journal of Hazardous Materials, Vol.47, pp.325-344.
    Zevenbergen, C. & Comans, R.N.J. (1994). “Geochemical Factors Controlling The Mobilization of Major Element During Weathering of MSWI Bottom Ash,” the 94th Proceeding of the WASCON Conference, pp.179-193.
    Zhang, X., Gress, D., Karpinski, S. and Eighmy, T.T. (1995). “Utilization of Municipal Solid Waste Combustion Bottom Ash as a Paving Material,” Transportation Research Record 1652, pp.257-263.

    下載圖示 校內:2011-08-27公開
    校外:2012-08-27公開
    QR CODE