| 研究生: |
李約亨 Li, Yueh-Heng |
|---|---|
| 論文名稱: |
介觀尺度之中芯多孔油注式液態薄膜燃油燃燒器之發展 Development of a Meso-Scale Fuel-Film Combustor with Central-Porous Fuel Inlet |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 液態薄膜燃燒器 、微型燃燒器 、多孔性載體 、自然螢光 、熱光電系統 、立體微粒影像測速 |
| 外文關鍵詞: | TPV, liquid film fuel, porous media, chemiluminescence, mesoscale combustor |
| 相關次數: | 點閱:136 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於液態燃料具有釋放高動力與能量比之特性,本論文提出小型中芯多孔油注式液態薄膜燃燒器,主要目的為研發以燃燒之快速熱釋放優點,結合光電(暨熱電)轉換達到小型(個人式)動力發電模組之研發。然而,當燃燒器的物理結構縮小至臨界尺寸時(如1公分以下),傳統式液態燃料之噴霧機構對空氣-燃料之混合無法達到燃燒需求,同時熱循環機制也無法有效地穩住火焰及減緩熱散失的增加。在本論文中,我們對直接注入式液態燃料之介尺寸燃燒器的微小化提出新穎的設計理論,將液態燃料導入多孔性金屬材質,使之在多孔性金屬表面上形成液態燃料薄膜,以達到有效增加燃料之面體比(S/V)的需求,並藉由熱化學所釋放之熱能回傳至多孔性金屬,提供燃油薄膜蒸發至氣態燃料所需之能量。
論文中對於中芯式多孔性微型燃燒器概念與設計作先行之理論分析,並對不同孔隙率與材質的多孔性材質做單元測試,且利用立體微粒影像測速技術以檢定漩渦器所產生之流場結構,利用拍攝火焰影像與CH*自然螢光以分析火焰結構與火焰不穩定機制,將火焰結構型態依雷諾數大小分類成三種,並提出其火焰穩駐機制。最後,將燃燒室金屬壁面以紅外線熱管代替以作為熱輻射發光載體,結合市售光電轉換晶片組整合成燃燒驅動式光電系統,證實小型液態燃油燃燒驅動式光電系統之可行性,未來可結合三五族光電晶片(如銻化鍺)組搭配窄波段發光載體(selective emitter),如此一來,可以大幅提升系統的整體效率。
小型中芯多孔油注式液態薄膜燃燒器之設計與測試,除了增加對此小型液態薄膜燃燒器的燃燒原理與火焰穩定機制的了解,也提供日後在光電及熱電能源系統的設計參考與選擇。
Utilizing a central-porous medium for a liquid fuel film combustor is an effective method to increase the contact surface area and conduction heat transfer for liquid fuel vaporization and flame stabilization. Based on this concept, a meso-scale liquid fuel film combustor with a central porous inlet was theoretically analyzed and its feasibility was confirmed. Different porosity of the porous medium specimen is tested and swirling inlet was testified having recirculation near the porous medium’s top and in a vicinity of the chamber exit by planar/stereo PIV system.
The effects of porous material type and pore size on the flame structures and combustion characteristics were examined. Porous media made of stainless steel and bronze were tested in the meso-scale combustor with different fuel and air flow rates, equivalence ratios, and pore sizes. The flame structure and its corresponding stabilization mechanism are different between the stainless steel and the bronze porous media combustor. In the stainless steel porous medium, the high specific heat capacity enhances fuel vaporization and fuel-air mixing, and the flame anchor locates on the surface of the porous cap. In the bronze porous medium, due to its low heat capacity, the flame is swept downstream where the recirculation zone above the porous cap offers a low velocity field to help anchor the flame. The flame structure and stabilization mechanism in the chamber can be related to a tribrachial flame. Chemiluminescence measurement and Abel deconvolution are performed to verify the flame structure in the vicinity of the porous cap. In addition, temperature measurements and exhaust gas analysis highlight the differences in combustion characteristics between the both different porous materials. As regards pore size effects, results indicate that there is no obvious difference in flame structure and flame anchoring position, but the stable operating regions of a porous combustor decrease with decreasing pore size due mainly to the concomitant increase in thermal conductivity.
Eventually, the developed central-porous fuel-film combustor was applied to a TPV system. An infrared thermal tube replaces the chamber wall of fuel-film combustor and doubles as an emitter. Integrating commercial PV cells with the infrared thermal combustor was tested and examined by the I-V analyzer.
Aggarwal, S. K., Puri, I. K., and Qin, X., 2001, “A numerical and experimental investigation of the inverse triple flames”, Physics of Fluids, vol. 13, pp. 265-275.
Ahn, J., Eastwood, C., Sitzki, L., and Ronney, P., 2005, “Gas phase and catalytic combustion in heat recirculating burners”, Proc. Combust. Inst., vol. 30, pp. 2463-2472.
Amano, T., and Yamaguchi, M, 2001, “Analysis of energy balance of electricity and heat generated by TPV generators”, Solar Energy Materials & Solar Cells, vol. 66, pp. 579-583.
Ameel, T. A., Papautsky, I., Warrington, R. O., Wegeng, R. S., and Drost, M. K., 2000, “Miniaturization technologies for advanced energy conversion and transfer systems.”, Journal of Propulsion and Power, vol. 16, pp. 577-582.
Angele K. P., Suzuki Y., Miwa J., and Kasagi N., 2006, “Development of a high-speed scanning micro PIV system using a rotating disc,” Meas. Sci. Techno., vol. 17 pp. 1639-1646.
Arana, L. R., Schaevitz, S. B., Franz, A. J., Schmidt, M. A., and Jensen, K. F., 2003, “A mictofabricated suspended-tube chemical reactor for thermally efficient fuel processing.” Journal of Microelectromechanical Systems, vol. 12, pp. 600-612.
Becker, H. A., and Yamazaki, S., 1978, “Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames,” Combustion and Flame, vol. 33, pp. 123.
Beer, J. M., and Chigier, N. A., 1972, “Combustion aerodynamics,” Science Publishers Ltd., London.
Bett, A.W., and Sulima, O. V., 2003, “GaSb photovoltaic cells for applications in TPV generators”, Semiconductor Science and Technology, vol. 18, pp. S184-S190.
Blevins, L. G., Renfro, M. W., Lyle, K. H., Laurendeau, N. M., and Gore, J. P., 1999, “Experimental study of temperature and CH radical location in partially premixed CH4/Air coflow flames,” Combustion and Flame, vol. 118, pp. 684-696.
Colangelo, G., de Risi, A., and Laforgia, D., 2003, “New approaches to the design of the combustion system for thermophotovoltaic applications”, Semiconductor Science & Technology, vol. 18, pp. S262-S269.
Colangelo, G., de Risi, A., and Laforgia, D., 2006, “Experimental study of a burner with high temperature heat recovery system for TPV applications”, Energy Conversion & Management, vol. 47, pp. 1192-1206.
Chang, F. and Dhir, V. K., 1995, “Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection”, International journal of Heat and Fluid Flow, vol. 16, pp. 78-87.
Chao, Y. C., 1991, “Studies of effect of the flow/flame interaction on the blowout mechanisms of the jet flame and the active control process,” National science Council, ROC, Report No. NSC79-0401-E006-07.
Chou, T., and Patterson, D. J., 1995, “In-cylinder measurement of mixture mal-distribution in a L-head engine,” Combustion and Flame, vol. 101, pp. 45-57.
Dasch, C. J., 1992, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods”, Applied Optics., vol. 31, pp. 1146-1152.
Davies, T. W., and Beer, J. M., 1971, “Flow in the wake of Bluff-body flame stabilizer”, Proc. Combust. Inst., vol. 13, pp. 243-247.
Deng, W., Klemic, J. F., Li, X., Reed, M. A., Gomez, A., 2007, “Liquid fuel microcombustors using microfabricated multiplexed electrospray sources”, Proc. Combust. Inst., vol. 31, pp. 2239-2246.
Dunn-Rankin D., Leal, E. M., Walther, D. C., 2005, “Personal power system”, Prog. Energy Combust. Sci., vol. 31, pp. 422-465.
Durisch, W., Bitnar, B., Roth, F., and Palfinger, G., 2003, “Small thermophotovoltaic prototype systems,” Solar Energy, vol. 75, pp. 11-15.
Federici, J. A., Norton, D. G., Bruggemann, T., Voit, K. W., Wetzel, E. D., and Vlachos, D. G.., 2006, “Catalytic microcombustors with integrated thermoelectric elements for portable power production”, Journal of Power Sources, vol. 161, pp. 1469-1478.
Fernandez-Pello, A. C., 2003, “Micropower generation using combustion: Issues and approaches”, Proc. Combust. Inst., vol. 29, pp. 883-899.
Fu, K., Knibloch, A. J., Cooley, B. A., Walther, D. C., Fernandez-Pello, A. C., Liepmann, D., Miyaska, K., 2001, Proceedings of the National Heat Transfer Conference, Anaheim, CA, June 10-12.
Guenther, B. D., Weller, H. R., and Godwin, J. L., 2001, “Search for nuclear isotopes for use in a nuclear battery”, Journal of Propulsion and Power, vol. 17, pp. 540-546.
Guo, Z. and Dhir, V. K., 1989, “Single- and two-phase heat transfer in tangential injection-induced swirl flow”, International journal of Heat and Fluid Flow, vol. 10, pp. 203-210.
Howell, J. R., Hall, M. J., and Ellzey, J. L., “Radiation enhanced/controlled phenomena of heat and mass transfer in porous media”, Progress in Energy and Combustion Science, vol. 22, pp. 121-145.
Iannotta, B., 2002, “A nuclear jump-start for space power.”, Aerospace America, pp. 30-39.
Incropera, F. P., DeWitt, D. P., Fundamentals of heat and mass transfer, Fifth edition, John Wiley & Sons, Inc., 2002.
Ishizuka, S., 1984, “On the behavior of premixed flames in a rotating flow field: establishment of tubular flames”, Proc. Combust. Inst., vol. 20, pp. 287-294.
Ju, Y., and Xu, B., 2005, “Theoretical and experimental studies on mesoscale flame propagation and extinction”, Proc. Combust. Instit., vol. 30, pp. 2445-2454.
Kaskan, W. E., 1957, “The dependence of flame temperature on mass burning velocity,” Proc. Combust. Inst., vol. 6, pp. 134-143.
Keane R. and Adrian R., 1992, “Theory of cross-correlation in PIV,” Appl. Sci Res., vol. 49 pp. 191-215.
Kim, N. I., Seo, J. I., Oh, K. C., and Shin, H. D., 2005, “Lift-off characteristics of triple flame with concentration gradient”, Proc. Combust. Inst., vol. 30, pp. 367-374.
Kĭoni, P. N., Bray, K. N. C., Greenhalgh, D. A., and Rogg, B., 1999, “Experimental and numerical studies of a triple flame”, Combustion and Flame, vol. 116, pp. 192-206.
Kreith, F., and Margolis, D., 1959, “Heat transfer and friction in turbulent vortex flow”, Applied Scientific Research, vol. 8, pp. 457-473.
Kyritsis, D. C., Coriton, B., Faure, F., Roychoudhury, S., and Gomez, A., 2004, “Optimization of a catalytic combustor using electrospray liquid hydrocarbons for mesoscale power generation”, Combustion and Flame, vol. 139, pp. 77-89.
Kyritsis, D. C., Roychoudhury, S., McEnally, C. S., 2004, “Mesoscale combustion: A first step towards liquid fueled batteries”, Experimental Thermal and Fluid Science, vol. 28, pp. 97-104.
Lawn, C. J., 2000, “Distributions of instantaneous heat release by the cross-correlation of chemiluminescent emissions,” Combustion and Flame, vol. 123, pp. 227-240.
Lee, D. H., and Kwon, S., 2002, “Heat transfer and quenching analysis of combustion in a micro combustion vessel.”, Journal of Micromechanics and Microengineering, vol. 12, pp. 670-676.
Nield, D. A., 1991, “Estimation of the stagnant thermal conductivity of saturated porous media”, Int. J. Heat Transfer, vol. 34, pp. 1575-1576.
Norton, D. G., Vlachos, D. G., 2005, “Hydrogen assisted self-ignition of propane/air mixtures in catalytic microburners”, Proc. Combust. Instit., vol. 30, pp. 2473-2480.
Norton, D. G., Wetzel, E. D., and Vlachos, D. G., 2006, “Thermal management in catalytic microreactors.”, Industrial & Engineering Chemistry Research, vol. 45, pp. 76-84
Mehra, A., Zhang, X., Ayon, A.A., Waitz, I. A., Schmidt, M. A., and Spadaccini, C. M., 2000,“A six-wafer combustion system for a silicon micro gas turbine engine”, Journal of Microelectromechanical System, vol. 9, pp. 517-527.
Michel, W., 2001, “Scaling laws in the macro-, micro- and nanpworlds”, European Journal of Physics, vol. 22, pp. 601-611.
Mills, A. F., Heat and Mass Transfer, The Richard D. Irwin Series in Heat Transfer, Richard D. Irwin, Inc., 1995.
Podolski, W., 2004, “Fuel cell vehicles-federal perspective Fuel cell vehicles- the next step toward commericialization TOPTEC.”, Air Resources Board, Sacramento, CA.
Poling, B. E., Prausnitz, J. M., O’Connell, J. P., The properties of gases and liquids, Fifth edition, McGraw-Hill, Sponsoring Editor Kenneth P. McCombs, 2001.
Qin, X., Puri, I. K., and Aggarwal, S. K., 2002, “Characteristics of lifted triple flames stabilized in the near field of a partially premixed axisymmetric jet”, Proc. Combust. Instit., vol. 29, pp. 1565-1572.
Qiu, K., Hayden, A.C.S., 2006, “Development of a silicon concentrator solar cell based TPV power system”, Energy Conversion & Management, vol. 47, pp. 365-376.
Qiu, K., Hayden, A.C.S., 2007, “Thermophotovoltaic power generation systems using natural gas-fired radiant burners”, Solar Energy Materials & Solar Cells, vol. 91, pp. 588-596.
Raffel M., Willert C., and Kompenhans J., 1998, “Particle Image Velocity: A Practical Guide”, Springer Verlag, Berlin.
Ragone, D., 1968, “Review of battery systems for electrically powered vehicles”, Society of Automotive Engineers, Mid-Year meeting, Detroit MI, May 20-24.
Ronney, P. D., 2003, “Analysis of non-adiabatic heat recirculating combustors”, Combustion and Flame, vol. 135, pp. 421-439.
Sarzi-Amade’, N., Double wall miniature combustor with liquid fuel film, Tesi di Laurea, Ph.D. dissertation, Politecnico di Milano Italy, 2005.
Schlapbach, L., and Züttel, A., 2001, “Hydro-storage materials for mobile applications.”, Nature, vol. 414, pp. 353-358.
Shah, k., Ouyang, X., and Besser, R. S., 2005, “Microreation for microfuel processing: Challenges and prospects”, Chemical Engineering & Technology, vol. 28, pp. 303-313.
Shu, Z., Krass, B. J., Choi, C. W., Aggarwal, S. K., Katta, V. R., and Ouri, I. K., 1998, “An experimental and numerical investigation of the structure of steady two-dimensional partially premixed methane-air flames”, Proc. Combust. Instit., vol. 27, pp. 625-632
Sirignano, W. A., Pham, T. K., Dunn-Rankin, D., 2002, “Miniature liquid-fuel-film combustor”, Proc. Combust. Instit., vol. 29, pp. 925-931.
Spadaccini, C. M., Mehra, A., Lee, J., Zhang, X., Lukachko, S., and Waitz, I. A., 2003, “High power density silicon combustion systems for micro gas turbine engines”, Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, vol. 125, pp. 709-719.
Syred, N, and Bĕer, J. M., 1974, “Combustion in swirling flow: a review”, Combustion and Flame, vol. 23, pp. 143-201.
Tangirala, V., and Driscoll, J. F., “Temperature within non-premixed flames: effects of rapid mixing due to swirl”, Combustion Science Technology, vol. 69, pp. 143-162.
Takeno, T. and Sato, K., 1979, “An excess enthalpy flame theory”, Combustion Science Technology, vol. 20, pp. 70-84.
Tompsett, G. A., Finnerty, C., Kendall, K., Alston, T., and Sammes, N. M., 2000, “Novel applications for micro-SOFCs.”, Journal of Power Sources, vol. 86, pp. 376-382.
Trimis, D., and Durst, F., 1996, “Combustion in a porous medium-Advances and applications”, Combustion Science and Technology, vol. 121, pp.153-168.
Trinh, K. P., Dunn-Rankin, D., and Sirignano, W., 2007, “Flame structure in small-scale liquid film combustors”, Proc. Combust. Inst., vol. 31, pp. 3269-3275.
Trinh, K. P., Flame structure and stabilization in miniature liquid film combustors, Ph.D. dissertation, UC Irvine, CA, USA, 2006.
Turns, S. R., An introduction to combustion, concepts and applications, Second Edition, McGraw-Hill Series in Mechanical Engineering, The McGraw-Hill Companies, Imc., 2000.
Vican, J., Gajdeczko, B. F., Dryer, F. L., Milius, D. L., Aksay, I. A., and Yetter, R. A., 2003, “Development of a microreactor as a thermal source for microelectromechanical system power generation”, Proc. Combust. Inst., vol. 29, pp. 909-916.
Waitz, I. A., Gauba, G., and Tzeng, Y. S., 1998, “Combustors for micro-gas turbine engines”, Journal of Fluids Engineering-Transactions of the ASME, vol. 120, pp. 109-117.
Wason, A., Carnell Jr., W. F., and Renfro, M. W., 2006, “Velocity and scalar measurements in neighboring lifted edge flames”, Combustion Science and Technology, vol. 178, pp. 789-811.
Weinberg, F. J., Rowe, D. M., Min, G., and Ronney, P. D., 2003, “On thermoelectric power conversion from heat recirculating combustion system”, Proc. Combust. Inst., vol. 29, pp. 941-947.
Westerweel J., 1994, “Efficient detection of spurious vectors in particle image velocimetry data,” Expe. Fluids, vol. 16, pp. 236-247.
Woodfield, P. L., Nakabe, K., and Suzuki, K., 2003, “Numerical study for enhancement of laminar flow mixing using multiple confined jets in a micro-can combustor.”, International Journal of Heat and Mass Transfer, vol. 46, pp. 2655-2663.
Yang, W., 2000, “MEMS free-piston knock engine”, In Proceedings of the 28th International Symposium on Combustion, pp. 1-4, Edinburgh, U.K.
Yang, W. M., Chou, S. K., Shu, C., Xue, H., Li, Z. W., Li, D. T. And Pan, J. F., 2003, “Microscale combustion research for application to micro thermophovoltaic systems”, Energy Conversion & Management, vol. 44, pp. 2625-2634.
Yang, W. M., Chou, S. K., Shu, C., Li, Z. W., and Xue, H., 2003*, “Research on micro-thermophotovoltaic power generators”, Solar Energy Materials & Solar Cells, vol. 80, pp. 95-104.
Yang W. M., Chou S. K., Shu C., Xue H., and Li Z. W., 2004, “Development of a prototype micro-thermophotovoltaic power generator”. J. Phys. D: Appl. Phys., vol. 37, pp. 1017-1020.
Yuasa, S., Oshimi, K., Nose, H., and Tennichi, Y., 2005, “Concept and combustion characteristics of ultra-micro combustors with premixed flame”, Proc. Combust. Instit., vol. 30, pp. 2455-2462.