研究生: |
薛玫芳 Hsueh, Mei-Fang |
---|---|
論文名稱: |
乙二醇及丙烯腈官能基的協同效應對高分子膠態電解質在電容器應用的影響 The Synergistic Effect of Nitrile and Ether Functionalities for Gel Electrolytes Used in Supercapacitors |
指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 電雙層電容器 、高分子膠態電解質 、聚丙烯腈 、聚乙二醇 、活化介相瀝青碳材 |
外文關鍵詞: | Electric double-layer capacitor, Gel polymer electrolyte, Poly(acrylonitrile), Poly(ethylene glycol), activated mesophase pitch |
相關次數: | 點閱:98 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立ㄧ膠態高分子電解質(Gel polymer electrolyte, GPE),由聚丙烯腈(PAN)及聚乙二醇(PEG)構成的三嵌段共聚物高分子(PAN-b-PEG-b-PAN)為主體,二甲基甲醯胺(DMF)為塑化劑,過氯酸鋰(LiClO4)為添加的鹽類。並探討高分子的腈基及醚基在離子傳遞能力上的協同效應(Synergistic effect),對碳電極與電解質界面電雙層形成的影響。此膠態電解質隨著聚丙烯腈及聚乙二醇組成比例不同,離子傳遞能力也不相同,在聚丙烯腈對聚乙二醇鍵長數目比為24:1下,可得到最高的離子導電度為1.1 ×10-2 S cm-1。另外,此三嵌段共聚物高分子具有特殊的線性結構,與碳電極表面有極佳的搭配性,可使膠態電解質滲入至碳電極之間,有效地降低阻抗中的離子移動阻力 Res(equivalent series resistance)及質傳擴散阻力(Warburg region, Rw)。
聚丙烯腈可增進鋰鹽解離程度及傳遞鋰離子進入碳材孔洞中。聚乙二醇在二甲基甲醯胺中有極佳的分散性,可避免聚丙烯腈鏈段的團聚,也可形成一離子通道促進離子傳遞能力。綜合上述,聚丙烯腈及聚乙二醇的協同效應可有效地提高電雙層電容器的儲能表現。在組成對稱性二極式超級電容器,使用活化介相瀝青碳材複合奈米碳管為碳電極材料,工作電位2.1 V,在高比功率為10 kW kg-1 (~ 5 kW L-1)下,比能量可高達20 Wh kg-1 (~ 10 Wh L-1)。此外,此膠態電解質製作方法簡易,機械性質具有可調控性,可應用於卷對卷工業製程上,結構設計上應用性廣泛,極具發展潛力。
This study examines the linear triblock copolymer design of poly(acrylonitrile)-b-poly(ethylene glycol)-b-poly(acrylonitrile) (PAN-b
-PEG-b-PAN) for a gel polymer electrolyte (GPE) swollen with dimethylformamide dissolving LiClO4. The study demonstrates the synergistic effect of the nitrile and ether functionalities in facilitating ion transport in the carbon films of electric double-layer capacitors (EDLCs). A GPE with a tuned AN/EG ratio exhibits ionic conductivity at approximately 10-2 S cm-1. The linear configuration incorporates the GPE border into the carbon electrodes. The PAN chain promotes ion solvation and transport into the carbon interior, and the PEG chain coordinates the solvent molecules to form ion motion channels. The synergistic effect of the PAN and PEG blocks enables a GPE EDLC delivering more energy and power than EDLCs with a liquid-phase electrolyte. The GPE EDLC delivers 20 Wh kg-1 (approximately 10 Wh L-1) at a high power of 10 kW kg-1 (approximately 5 kW L-1) when using a high-porosity carbon electrode derived from mesophase pitch activation. The distinctive merit of the GPE film is its adjustable mechanical integrity, which makes the roll-to-roll assembly of GPE-based EDLCs readily scalable to industrial levels.
參考文獻
1. Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. ACS Nano. 2010, 4, 1443-1450.
2. Zhou, Y.; Kim, Y. H.; Jo, C. S.; Lee, J. W.; Lee, C. W.; Yoon, S. H. A novel mesoporous carbon-silica-titania nanocomposite as a high performance anode material in lithium ion batteries. Chem Commum. 2011, 47, 4944-4946.
3. Kumar, Y.; Pandey, G. P.; Hashmi, S. A. Gel Polymer Electrolyte Based Electrical Double Layer Capacitors: Comparative Study with Multiwalled Carbon Nanotubes and Activated Carbon Electrodes. J. Phys. Chem. C 2012, 116, 26118-26127.
4. Yoo, J. J.; Balakrishnan, K.; Huang, J. S.; Meunier, V.; Sumpter, Bobby G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R.; Ajayan, P. M. Uitrathin Planar Graphene Supercapacitors. Nano Lett. 2011, 11, 1423-1427.
5. Kinoshita, K. John Wiley & Sons, New York, 1988, 293-387.
6. Conway, B. E. Electrochemical supercapacitors: Scientific fundamentals and technological applications; Kluwer Academic/Plenum, New York, 1999.
7. Yoon, S.; Lee, J.; Hyeon, T.; Oh, S. M. Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon. J. Electrochem. Soc. 2000, 147, 2507.
8. Kotz, R.; Carlen, M. Principles and applications of electrochemical capacitor. Electrochim. Acta 2000, 45, 2483-2498.
9. Strooler, M. D.; Rouff, R.S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 2010, 3, 1294-1301.
10. Huang, C. W.; Chuang, C. M.; Ting, J. M.; Teng, H. S. Significantly enhanced charge conduction in electric double layer capacitors using carbon nanotube-grafted activated carbon electrodes. J. Power Sources 2008, 183, 406-410.
11. Yoon, S.; Oh, S. M.; Lee, C. W.; Lee, J. W. Influence of Particle Size on Rate Performance of Mesoporous Carbon Electric Double-Layer Capacitor (EDLC) Electrodes Batteries and Energy Storage. J. Electrochem. Soc. 2010, 157, A1229.
12. Huang, H. C.; Huang, C. W.; Hsieh, C. T.; Kuo, P. L.; Ting, J. M.; Teng, H. S. Photocatalytically Reduced Graphite Oxide Electrode for Electrochemical Capacitors. J. Phys. Chem. C 2011, 115, 20689-20695.
13. Pasquier, A. D.; Plitz, I.; Gural, J.; Menocal, S.; Amatucci, G. Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes. J. Power Sources 2003, 113, 62-71.
14. Gamby, J.; Taberna, P. L.; Simon, P.; Fauvarque, J. F.; Chesneau, M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 2001, 101, 109-116.
15. Merino, C.; Soto, P.; Ortego, V. E.; Gomez de Salazar, J. M.; Pico, F.; Rojo, J. M. Carbon nanofibres and activated carbon nanofibers as electrodes in supercapacitors. Carbon 2005, 43, 551-557.
16. Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, Motoo.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as supercapacitor electrodes. Nature Materials 2006, 5, 987-994.
17. Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C 2009, 113, 13103-13107.
18. Choi, H. J.; Jung, S. M.; Seo, J. M.; Chang, D. W.; Dai, L.; Baek, J. B. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 2012, 1, 534-551.
19. Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J. et al. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537-1541.
20. Chmiola, J.; Yushin, G.; Dash, R.; Gogotsi, Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power Sources 2006, 158, 765-772.
21. Probatle, H.; Wiener, M.; Fricke, J. Carbon Aerogels for Electrochemical Double Layer Capacitors. J. Porous Mater. 2003, 10, 213-222.
22. Cooper, A. M.; Pletcher, D.; Walsh, F. C. Chem. Rev. 1990, 837.
23. Marsan, B.; Fradette, N.; Beaudoin, C. Physicochemical and Electrochemical Properties of CuCo2O4 Electrodes Prepared by Thermal Decomposition for Oxygen Evolution. J. Electrochem. Soc. 1992, 139, 1889-1896.
24. Zheng, J. P.; Cygan, P. J.; Jow, T. R. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J. Electrochem. Soc. 1995, 142, 2699-2703.
25. Mattos-Costa, F. I.; Lima-Neto, P.; Machado, S. A. S.; Avaca, L. A. Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium. Electrochim. Acta 1998, 44, 1515-1523.
26. Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589
27. Armand, M. B. Second International meeting on Solid Electrolytes Extended Abstracts. St. Andrews Ecosse, 1978.
28. Armand, M. B. Fast Ion Transport in Solids. New York, 1979.
29. Kyotani, T.; Nagai, T.; Inoue, S.; Tomita, A. Formation of New Type of Porous Carbon by Carbonization in Zeolite Nanochannels. Chem. Mater. 1997, 9, 609-615.
30. Shi, H. Activated carbons and double layer capacitance. Electrochim. Acta 1996, 41, 1633-1639.
31. Yang, H.; Yoshio, M.; Isono, K.; Kuramoto, R. Improvement of Commericial Activated Carbon and Its Application in Electric Double Layer Capacitors. Electrochem. Solid-State Lett. 2002, 5, A141-A144.
32. Janes, A.; Kuring, H.; Lust, E. Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon, 2007, 1226-1233.
33. Endo, M.; Maeda, T.; Takeda, T.; Kim, Y. J.; Koshiba, K.; Hara, H.; Dresselhaus, M. S. Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes. J. Electrochem. Soc. 2001, 148, A910-A914.
34. Weng, T. C.; Teng, H. Characterization of High Porosity Carbon Electrodes Derived from Mesophase Pitch for Electric Double-Layer Capacitors. J. Electrochem. Soc. 2001, 148, A368-A373.
35. Endo, M.; Kim, Y. J.; Maeda, T.; Koshiba, K.; Katayama, K.; Dresselhaus, M. S. Morphological effect on the electrochemical behavior of electric double-layer capacitors. J. Mater. Res., 2001, 16, 3402.
36. Kierzek, K.; Frackwiak, E.; Lota, G.; Gryglewicz, G.; Machnikowski, J. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim. Acta 2004, 49, 515-523.
37. Teng, H.; Chang, Y.; Hsich, C. Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching. Carbon, 2001, 39, 1981-1987.
38. Endo, M.; Kim, Y. J.; Takeda, T.; Maeda, T.; Hayashi, T.; Koshiba, K.; Hara, H.; Dresselhaus, M. S. Poly(vinlidene chloride)-Based Carbon as an Electrode Material for High Power Capacitors with an Aqueous Electrolyte. J. Electrochem. Soc. 2001, 148, A1135-A1140.
39. Shiraishi, S.; Kurihara, H.; Oya, A. Preparation and Electric Double Layer Capacitance of Mesoporous Carbon. Carbon Sci. 2001, 1, 133-137.
40. Shiraishi, S.; Kurihara, H.; Shi, L.; Nakayama, T.; Oya, A. Electric Double-Layer Capacitance of Meso/Macroporous Activated Carbon Fibers Prepared by the Blending Method I. Nickel-Loaded Activaated Carbon Fibers in Propylene Carbonate Solution Containing LiClO4 Salt. J. Electrochem. Soc. 2002, 149, A855-A861.
41. Kim, Y.; Abe, Y.; Yanagiura, T.; Park, K.; Shimizu, M.; Iwazaki, T.; Nakagawa, S.; Endo, M.; Dresseihaus, M. S. Easy perparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon, 2007, 45, 2116-2125.
42. Hou, P. X.; Yamazaki, T.; Orikasa, H.; Kyotani, T. An easy method for the synthesis of ordered microporous carbons by the template technique. Carbon, 2005, 43, 2624-2627.
43. Nishihara, H.; Itoi, H.; Kogure, T.; Hou, P.; Touhara, H.; Okino, F.; Kyotani, T. Investigation of the Ion Storage/Transfer Behavior in an Electrical Double-Layer Capacitor by Using Ordered Microporous Carbons as Model Materials. Chem. Eur. J. 2009, 15, 5355-5363.
44. Wang, H.; Gao, Q.; Hu, J.; Chen, Z. High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance. Carbon, 2009, 47, 2259-2268.
45. Morishita, T.; Tsumura, T.; Toyoda, M.; Przepiorski, J.; Morawski, A. W.; Konno, H.; Inagaki, M. A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon, 2010, 48, 2690-2707.
46. Morishita, T.; Soneda, Y.; Tsumura, T.; Inagaki, M. Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon, 2006, 44, 2360-2367.
47. Fernandez, J. A.; Morishita, T.; Toyoda, M.; Inagaki, M.; Stoeckli, F.; Centeno, T. A. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J. Power Sources 2008, 175, 675-679.
48. Gogotsi, Y.; Nikitin, A.; Ye, H.; Zou, W.; Fischer, J.E.; Yi, B.; Foley, H. C.; Barsoum, M.W. Nanoporous carbide-derived carbon with tunable pore size. Nature Materials 2003, 2, 591-594.
49. Gogotsi, Y.; Dash, R.K.; Yushin, G.; Yildirim, T.; Laudisio, G.; Fischer J.E. Tailoring of Nanoscale Porosity in Carbide-Derived Carbons for Hydrogen Storage. J. Am. Chem. Soc. 2005, 127, 16006-16007.
50. Dash, R.K.; Yushin, G.; Gogotsi, Y. Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide. Micropor. Mesopor. Mater. 2005, 86, 50-57.
51. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Porter, C.; Simon, P.; Taberna, P.L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science 2006, 313, 1760-1763.
52. Illán-Gómez, M. J.; García-García, A.; Salinas-Martínez de Lecea, C.; Linares-Solano. A. Activated Carbons from Spanish Coals. 2. Chemical Activation. Energy Fuels, 1996, 10, 1108-1114.
53. Ahmadpour, A.; Do, D. D.; The preparation of active carbons from coal by chemical and physical activation. Carbon, 1996, 34, 471-479.
54. Huang, C. W.; Hsieh, C. T.; Kuo, P. L.; Teng, H. S. Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. J. Mater. Chem. 2012, 22, 7314.
55. Brunauer, S. The Adsorption of Gases and Vapor. Physical Adsorption, Princeton University, Princeton, Now York, 1943, 1.
56. Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angew. Chem. Int. Ed. 1999, 38, 56-77.
57. Brunaller, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 390.
58. Tarazona, P.; Marconi, U. M. B.; Evans, R. Mol. Phys. 1987, 60, 543.
59. Lee S. M.; Chen C. Y.; Wang C. C. The study on the conductivity and morphology of polyurethaneurea electrolytes based on poly(ethylene glycol) 2000 and LiClO4. Electrochim. Acta 2003, 48, 3699-3708.
60. Lee, S. M.; Chena, C. Y.; Wang, C. C. The effect of the length of the oxyethylene chain on the conductivity of the polyurethaneurea electrolyte. Electrochim. Acta 2004, 49, 4907-4913.
61. Wang, H. L.; Kao, H. M.; Digar, M.; Wen, T. C. FTIR and Solid State 13C NMR Studies on the Interaction of Lithium Cations with Polyether Poly(urethane urea). Macromolecules 2001, 34, 529-537.
62. Wu, C. G.; Wu, C. H.; Lu, M. I.; Chuang, H. J. New Solid Polymer Electrolytes Based on PEO/PAN Hybrids. J. Appl. Polym. Sci. 2005, 99, 1530-1540.
63. Magistris, A.; Singh, K. PEO-Based Polymer Electrolytes. Polymer International 1992, 277-280.
64. Gnanaraj, J. S.; Karekar, R. N.; Skaria, S.; Rajan, C. R.; Ponrathnam, S. Studies on comb-like polymer blend with poly(ethylene oxide)-lithium perchlorate salt complex electrolyte. Polymer, 1997, 38, 3709-3712.
65. Qi, L.; Lin, Y.; Jing, X.; Wang, F. Study of the conductivity and side chain mobility of a comb-like polymer electrolyte using the dynamic mechanical method. Solid State Ionics, 2001,139, 293-301.
66. Ikeda, Y.; Wada, Y.; Matoba, Y.; Murakami, S.; Kohjiya, S. Characterization of comb-shaped high molecular weight poly(oxyethylene) with tri(oxyethylene) side chains for a polymer solid electrolyte. Electrochim. Acta 2000, 45, 1167-1174.
67. Houa, W. H.; Chena, C. Y.; Wang, C. C. The environment of lithium ions and conductivity of comb-like polymer electrolyte with a chelating functional group. Polymer, 2003, 44, 2983-2991.
68. Yang, H. Y.; Wu, G.; Chen, H.; Yuan, F.; Wang, M.; Fu, R. J. Preparation and Ionic Conductivity of Solid Polymer Electrolyte Based on Polyacrylonitrile-Polyethylene Oxide. J. Appl. Polym. Sci. 2006, 101, 461-464.
69. Kuo, P. L.; Liang, W. J.; Lin, C. L. Preparation and Ionic Conductivity of Solid Polymer Electrolytes Based on Segmented Polysiloxane-Modified Polyurethane. Macromol. Chem. Phys. 2002, 203, 230-237.
70. Liang, W. J.; Kuo, C. L.; Lin, C. L.; Kuo, P. L. Solid Polymer Electrolytes. IV. Preparation and Characterization of Novel Crosslinked Epoxy-Siloxane Polymer Complexes as Polymer Electrolytes. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 1226-1235.
71. Liang, W. J.; Kuo, P. L. Solid polymer electrolytes VIII: effect of LiClO4-doped level on the microstructure and ionic conductivity of a chemical-covalently polyether-siloxane hybrid electrolyte. Polymer, 2004, 45, 1617-1626.
72. Fontanella, J. J.; Wintersgill, M. C.; Calame, J.P. Electrical relaxation in pure and alkali metal thiocyanate complexed poly(ethylene oxide). Solid State Iottics 1983, 8, 333-339
73. Kelly, E.; Owen, J. R.; Steele, B. C. H. Poly(Ethylene Oxide) Electrolytes For Operation At Near Room Temperature. J. Power Sources 1985, 14, 13-21.
74. Ito, Y.; Kanehori, K.; Miyauchi, K.; Kudo, T. Ionic conductivity of electrolytes formed from PEO-LiCF3SO a complex with low molecular weight poly(ethylene glycol). J. Mater. Sci. 1987, 22, 1845-1849.
75. Nagasubramanian, G.; Stefano, S. D. 12-Crown‐4 Ether‐Assisted Enhance
-ment of Ionic Conductivity and Interfacial Kinetics in Polyethylene Oxide Electrolytes. J. Electrochem. Soc. 1990, 137, 3830-3835.
76. Chaa, E. H.; Macfarlane, D. R.; Forsythc, M.; Leed, C. W. Ionic conductivity studies of polymeric electrolytes containing lithium salt with plasticizer. Electrochim. Acta 2004, 50, 335-338.
77. Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, A. I. Ionic Conductivity of Hybrid Films Based on Polyacrylonitrile and Their Battery Application. J. Appl. Polym. Sci. 1982, 27, 4191-4198.
78. Choe, H. S.; Carroll, B. G.; Pasquariello, D. M.; Abraham, K. M. Characterization of Some Polyacrylonitrile-Based Electrolytes. Chem. Mater. 1997, 9, 369-379.
79. Wang, Z.; Huang, B.; Huang, H.; Chen, L.; Xue, R.; Wang, F. O. Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and Infrared Spectroscopy. Electrochim. Acta 1996, 41, 1443-1446.
80. Starkey, S. R.; Roger Frech, R. Plasticizer interactions with polymer and salt in propylene carbonate-poly(acrylonitrile)4ithium triflate. Electrochim. Acta 1996, 42, 471-474.
81. Ferry, A.; Edman, L.; Forsyth, M.; MacFarlane, D. R.; Sun, J. NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN. Electrochim. Acta 2000, 45, 1237-1242.
82. Iijima, T.; Toyoguchi, Y.; Eda, N. Denki Kagaku, 1985, 53, 619.
83. Appetecchi, G. B.; Croce, F.; Scrosati, B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based Gel electrolytes. Electrochim. Acta 1995, 40, 991-997.
84. Bohnke, O.; Rousselot, C.; Gillet, P. A.; Truche, C. Gel Electrolyte for Solid-State Electrochromic Cell. J. Electrochem. Soc. 1992, 139, 1862-1865.
85. Rhoo, H. J.; Kim, H. T.; J Park, J. K.; Hwang, T. S. Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes. Electrochim. Acta 1997, 42, 1571-1579.
86. Watanabe, M.; Kanba, M.; Matsuda, H.; Tsunemi, K.; Mizoguchi, K.; Tsuchida, K.; Shinohara, I. High Lithium Ionic Conductivity of Polymeric Solid Electrolytes. Makromol. Chem., Rapid Commun. 1981, 2,741-744
87. Tsuchida, E.; Ohno, H.; Tsunemi K. Conduction of lithium ions in polyvinylidene fluoride and its derivatives-I. Electrochim. Acta 1983, 28, 591-595.
88. Saikia, D.; Kumar, A. Ionic conduction in P(VDF-HFP)/PVDF-(PC+DEC)
-LiClO4 polymer gel electrolytes. Electrochim. Acta 2004, 49, 2581-2589.
89. Kima, H. S.; Periasamy, P.; Moon, S. I. Electrochemical properties of the Li-ion polymer batteries with P(VdF-co-HFP)-based gel polymer electrolyte. J. Power Sources 2005, 141, 239-297.
90. Sukeshini, A. M.; Nishimoto, A.; Watanabe, M. Transport and electrochemical characterization of plasticized poly(viny1 chloride) solid electrolytes. Solid State Iottics 1996, 385-393.
91. Wang, Z.; Huang, B.; Wang, S.; Xue, R.; Huang, X.; Chen, L. Competition Between the Plasticizer and Polymer on Associating with Li+ Ions in Polyacrylonitrile‐Based Electrolytes. J. Electrochem Soc. 1997, 144, 778-786.
92. Hamann, C. H.; Hamnett, A.; Vielstich, W.; Electrochemistry, Wiley-Vch :New York, 1998.
93. Young, H. D. Physics, Addison-Wesley Publishing Co. :New York, 1992.
94. Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamental and Application, John Wiley & Sons, Canada, 1980.
95. Conway, B.E. Electrochemical supercapacitors scientific fundamentals and technological applications, Kluwer Academic, New York, 1999, 105.