簡易檢索 / 詳目顯示

研究生: 薛玫芳
Hsueh, Mei-Fang
論文名稱: 乙二醇及丙烯腈官能基的協同效應對高分子膠態電解質在電容器應用的影響
The Synergistic Effect of Nitrile and Ether Functionalities for Gel Electrolytes Used in Supercapacitors
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 120
中文關鍵詞: 電雙層電容器高分子膠態電解質聚丙烯腈聚乙二醇活化介相瀝青碳材
外文關鍵詞: Electric double-layer capacitor, Gel polymer electrolyte, Poly(acrylonitrile), Poly(ethylene glycol), activated mesophase pitch
相關次數: 點閱:98下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立ㄧ膠態高分子電解質(Gel polymer electrolyte, GPE),由聚丙烯腈(PAN)及聚乙二醇(PEG)構成的三嵌段共聚物高分子(PAN-b-PEG-b-PAN)為主體,二甲基甲醯胺(DMF)為塑化劑,過氯酸鋰(LiClO4)為添加的鹽類。並探討高分子的腈基及醚基在離子傳遞能力上的協同效應(Synergistic effect),對碳電極與電解質界面電雙層形成的影響。此膠態電解質隨著聚丙烯腈及聚乙二醇組成比例不同,離子傳遞能力也不相同,在聚丙烯腈對聚乙二醇鍵長數目比為24:1下,可得到最高的離子導電度為1.1 ×10-2 S cm-1。另外,此三嵌段共聚物高分子具有特殊的線性結構,與碳電極表面有極佳的搭配性,可使膠態電解質滲入至碳電極之間,有效地降低阻抗中的離子移動阻力 Res(equivalent series resistance)及質傳擴散阻力(Warburg region, Rw)。
    聚丙烯腈可增進鋰鹽解離程度及傳遞鋰離子進入碳材孔洞中。聚乙二醇在二甲基甲醯胺中有極佳的分散性,可避免聚丙烯腈鏈段的團聚,也可形成一離子通道促進離子傳遞能力。綜合上述,聚丙烯腈及聚乙二醇的協同效應可有效地提高電雙層電容器的儲能表現。在組成對稱性二極式超級電容器,使用活化介相瀝青碳材複合奈米碳管為碳電極材料,工作電位2.1 V,在高比功率為10 kW kg-1 (~ 5 kW L-1)下,比能量可高達20 Wh kg-1 (~ 10 Wh L-1)。此外,此膠態電解質製作方法簡易,機械性質具有可調控性,可應用於卷對卷工業製程上,結構設計上應用性廣泛,極具發展潛力。

    This study examines the linear triblock copolymer design of poly(acrylonitrile)-b-poly(ethylene glycol)-b-poly(acrylonitrile) (PAN-b
    -PEG-b-PAN) for a gel polymer electrolyte (GPE) swollen with dimethylformamide dissolving LiClO4. The study demonstrates the synergistic effect of the nitrile and ether functionalities in facilitating ion transport in the carbon films of electric double-layer capacitors (EDLCs). A GPE with a tuned AN/EG ratio exhibits ionic conductivity at approximately 10-2 S cm-1. The linear configuration incorporates the GPE border into the carbon electrodes. The PAN chain promotes ion solvation and transport into the carbon interior, and the PEG chain coordinates the solvent molecules to form ion motion channels. The synergistic effect of the PAN and PEG blocks enables a GPE EDLC delivering more energy and power than EDLCs with a liquid-phase electrolyte. The GPE EDLC delivers 20 Wh kg-1 (approximately 10 Wh L-1) at a high power of 10 kW kg-1 (approximately 5 kW L-1) when using a high-porosity carbon electrode derived from mesophase pitch activation. The distinctive merit of the GPE film is its adjustable mechanical integrity, which makes the roll-to-roll assembly of GPE-based EDLCs readily scalable to industrial levels.

    總 目 錄 中文摘要 ...................................................................................... I 英文摘要 ...................................................................................... II 誌謝 ........................................................................................ III 本文目錄 ...................................................................................... IV 表目錄 ....................................................................................... VII 圖目錄 ...................................................................................... VIII 本文目錄 第一章 緒論 1-1 前言 .................................................................................. 1 1-2 研究動機 ............................................................................. 12 第二章 文獻回顧與理論說明 2-1 碳材應用於超級電容器的發展 …............................................ 14 2-1-1 孔洞碳材應用於超級電容器的發展 …................................ 14 2-1-2 介相瀝青碳材應用於超級電容器的發展 ............................. 18 2-1-3 碳材物性分析方法 ......................................................... 19 2-1-3.1 吸附理論 ................................................................. 19 2-1-3.2 BET等溫吸附模式 ...................................................... 25 2-1-3.3 密度泛涵理論 ............................................................ 27 2-1-3.4 動態光散射儀 ............................................................ 28 2-1-3.5 掃描式電子顯微鏡 ..................................................... 31 2-2 高分子電解質在電化學儲能之應用 ......................................... 34 2-2-1 高分子電解質發展 ......................................................... 34 2-2-2 PEG及PAN-based高分子電解質在超級電容器發展 ............. 40 2-2-3 共聚物高分子及膠態高分子電解質物性分析方法 .................. 42 2-2-3.1 拉曼光譜分析 .......................................................... 42 2-2-3.2 核磁共振分析 .......................................................... 44 2-3 電雙層的結構與電容原理 ...................................................... 47 2-3-1 電雙層結構 ................................................................... 47 2-3-2 電容原理 ...................................................................... 52 2-4 電化學測試方法原理 ............................................................ 56 2-4-1 二極式與三極式循環伏安法 ............................................. 56 2-4-2 電化學充放電 ................................................................ 57 2-4-3 交流阻抗分析 ................................................................ 59 第三章 實驗方法與設備 3-1 藥品、材料與儀器設備 ......................................................... 64 3-1-1 藥品與材料 ................................................................... 64 3-1-2 儀器與實驗設備 ............................................................. 65 3-2 活化介相瀝青碳材複合奈米碳管製備方法 …………...............….. 67 3-2-1 製備活化介相瀝青碳材 ................................................... 67 3-2-2 製備活化介相瀝青碳材複合奈米碳管 ................................ 67 3-2-3 熱處理aMP-mt步驟 ....................................................... 68 3-3 膠態高分子電解質製備方法 ................................................... 69 3-3-1 合成PAN-b-PEG-b-PAN ............................................... 69 3-3-2 製備膠態高分子電解質薄膜 ............................................. 69 3-4 碳材物性分析操作條件 …………..…………………….................. 70 3-5 共聚物高分子及膠態高分子電解質物性分析操作條件 ................. 71 3-6 電容器組裝及電化學測試方法 ............................................... 72 3-6-1 電容器組裝 ................................................................... 72 3-6-2 電化學測試操作條件 ...................................................... 73 第四章 結果與討論 4-1 活化介相瀝青碳材複合奈米碳管物理性質分析 ......................... 74 4-1-1 SEM分析 ...................................................................... 74 4-1-2 BET分析 ...................................................................... 76 4-2 PAN-b-PEG-b-PAN copolymer 結構分析 ............................ 78 4-2-1 PAN-b-PEG-b-PAN 合成機制 ………............................. 78 4-2-2 SEM分析 ...................................................................... 79 4-2-3 NMR分析 ..................................................................... 81 4-3 膠態高分子電解質物理化學性質分析 ...................................... 84 4-3-1 Raman分析 .................................................................. 84 4-3-2 離子導電度分析 ............................................................. 90 4-3-3 循環伏安法 ................................................................... 93 4-4 膠態電解質電容器儲能表現 ................................................... 95 4-4-1 膠態電解質電容器組裝示意圖 .......................................... 95 4-4-2 循環伏安法分析及討論 ................................................... 97 4-4-3 定電流充放電分析及討論 ................................................ 99 4-4-4 交流阻抗分析及討論 ..................................................... 103 4-4-5 比能量及比功率表現討論 ............................................... 106 第五章 結論 ................................................................................ 108 參考文獻 .................................................................................... 110 表 目 錄 第一章 緒論 表1-1 儲能裝置的性能比較 ......................................................... 3 第二章 文獻回顧與理論說明 表2-1 常見膠態高分子電解質基材性質 ......................................... 36 表2-2 液態及固態核磁共振比較與差異性 ...................................... 46 第四章 結果與討論 表4-1 不同單體合成比例的PAN-b-PEG-b-PAN化學式及組成 ......... 83 表4-2 ClO4- anions的四種離子存在形態在整個ClO4- anions 拉曼峰所佔百分比 ................................................................ 89 表4-3 LE及GPEs對稱性二極式電容器的各阻力分析 ........................ 105 圖 目 錄 第一章 緒論 圖1-1 各種儲能裝置的比能量與比功率的分布 ............................... 3 第二章 文獻回顧與理論說明 圖2-1 等溫吸附曲線常見的六種型式 ............................................ 23 圖2-2 遲滯曲線的四種類型 ......................................................... 24 圖2-3 孔隙結構吸脫附行為示意圖 ................................................ 24 圖2-4 物理吸附分析儀 ................................................................ 26 圖2-5 動態散射粒徑分析儀結構示意圖 .......................................... 30 圖2-6 懸浮粒子光散射示意圖 ....................................................... 30 圖2-7 掃描式電子顯微鏡結構示意圖 .............................................. 31 圖2-8 光散射三種途徑之簡易示意圖 .............................................. 43 圖2-9 I=1/2的氫原子核在外加磁場B0的能階分布圖 ...................... 45 圖2-10 在外加磁場B0中能階差關係圖 ........................................... 45 圖2-11 Helmholtz電雙層結構模型與電位分佈圖 ............................ 48 圖2-12 電雙層理論的三種模型 ...................................................... 51 圖2-13 電雙層結構示意圖 ............................................................ 51 圖2-14 平行板電容器示意圖 ........................................................ 53 圖2-15 (a)兩電容器串聯;(b) 相當電容器示意圖 ............................. 55 圖2-16 (a)兩電容器並聯;(b) 相當電容器示意圖 ............................. 55 圖2-17 從一循環線性電壓掃描,(a)電位對時間作圖; (b)電流對時間作圖; (c)電流對電位作圖 .................................... 58 圖2-18 以掃描電壓ν(V/s)進行線性電壓增加實驗。(a)電壓對時間 作圖;(b)電流對時間作圖 ....................................................... 58 圖2-19 阻抗之複數平面中代表電阻和電容兩部分 ............................. 62 圖2-20 電阻和電容串聯(a)電路圖(b)複數平面阻抗圖 ......................... 63 圖2-21 電阻和電容並聯(a)電路圖(b)並聯RC電路中,電容和 電阻電流向量之總(c)複數平面之阻抗圖 ............................................. 63 第三章 實驗方法與設備 圖3-1 電容器組裝圖 ..................................................................... 72 第四章 結果與討論 圖4-1 aMP-mt的SEM分析 ............................................................ 75 圖4-2 aMP-mt的粒徑分布圖 …………....………………….............….. 75 圖4-3 aMP-mt的氮氣吸脫附曲線圖 ............................................... 77 圖4-4 aMP-mt的孔徑分布圖 ......................................................... 77 圖4-5 PAN-b-PEG-b-PAN自由基聚合反應合成圖 ........................... 78 圖4-6 PAN-b-PEG-b-PAN的SEM分析 ........................................... 80 圖4-7 PAN-b-PEG-b-PAN高分子電解質薄膜及不同DMF含量 的高分子膠態電解質溶液 …………............................................. 80 圖4-8 H NMR圖譜對不同單體合成比例的 PAN-b-PEG-b-PAN ............................................................... 82 圖4-9 PEG5k-PAN53的1H NMR圖譜分析 ....................................... 83 圖4-10 (a) GPEs中Li+與ClO4-的三種交互模型 (b) GPEs中LiClO4的四種離子存在形態 ..................................... 87 圖4-11 PEG5k-PAN53共聚物高分子及GPE53的 Raman圖譜分析 .................................................................... 88 圖4-12 GPEs的Raman圖譜分析 ..................................................... 88 圖4-13 (a) GPEs中ClO4- 拉曼峰作多峰曲線擬合分析 (b) GPEs中PAN上C≡N拉曼峰 ................................................... 89 圖4-14 (a) LE及GPEs在不同AN/EG比例下的Nyquist Plot (b) LE及GPEs的離子導電度對應free ClO4-離子的 解離程度百分比 ..................................................................... 92 圖4-15 LE及GPE24循環伏安法分析圖 ............................................. 94 圖4-16 LE及GPE24穩定電位窗測試 ................................................ 94 圖4-17 膠態電解質對稱性二極式電容器組裝示意圖 .......................... 96 圖4-18 LE及GPEs對稱性二極式電容器在不同掃描速率下 的循環伏安圖 ........................................................................ 98 圖4-19 LE及GPEs對稱性二極式電容器在不同放電速率下 的比電容值 .......................................................................... 101 圖4-20 LE及GPE24對稱性二極式電容器在0.125 A g-1 充放電速率下,電位對時間的變化 ..................................... 101 圖4-21 LE及GPE cells在不同放電速率下對IR drop作圖 .................. 102 圖4-22 LE及GPE cells的Nyquist Plot ........................................... 105 圖4-23 LE及GPE cells的Ragone Plot ........................................... 107

    參考文獻

    1. Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. ACS Nano. 2010, 4, 1443-1450.
    2. Zhou, Y.; Kim, Y. H.; Jo, C. S.; Lee, J. W.; Lee, C. W.; Yoon, S. H. A novel mesoporous carbon-silica-titania nanocomposite as a high performance anode material in lithium ion batteries. Chem Commum. 2011, 47, 4944-4946.
    3. Kumar, Y.; Pandey, G. P.; Hashmi, S. A. Gel Polymer Electrolyte Based Electrical Double Layer Capacitors: Comparative Study with Multiwalled Carbon Nanotubes and Activated Carbon Electrodes. J. Phys. Chem. C 2012, 116, 26118-26127.
    4. Yoo, J. J.; Balakrishnan, K.; Huang, J. S.; Meunier, V.; Sumpter, Bobby G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R.; Ajayan, P. M. Uitrathin Planar Graphene Supercapacitors. Nano Lett. 2011, 11, 1423-1427.
    5. Kinoshita, K. John Wiley & Sons, New York, 1988, 293-387.
    6. Conway, B. E. Electrochemical supercapacitors: Scientific fundamentals and technological applications; Kluwer Academic/Plenum, New York, 1999.
    7. Yoon, S.; Lee, J.; Hyeon, T.; Oh, S. M. Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon. J. Electrochem. Soc. 2000, 147, 2507.
    8. Kotz, R.; Carlen, M. Principles and applications of electrochemical capacitor. Electrochim. Acta 2000, 45, 2483-2498.
    9. Strooler, M. D.; Rouff, R.S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 2010, 3, 1294-1301.
    10. Huang, C. W.; Chuang, C. M.; Ting, J. M.; Teng, H. S. Significantly enhanced charge conduction in electric double layer capacitors using carbon nanotube-grafted activated carbon electrodes. J. Power Sources 2008, 183, 406-410.
    11. Yoon, S.; Oh, S. M.; Lee, C. W.; Lee, J. W. Influence of Particle Size on Rate Performance of Mesoporous Carbon Electric Double-Layer Capacitor (EDLC) Electrodes Batteries and Energy Storage. J. Electrochem. Soc. 2010, 157, A1229.
    12. Huang, H. C.; Huang, C. W.; Hsieh, C. T.; Kuo, P. L.; Ting, J. M.; Teng, H. S. Photocatalytically Reduced Graphite Oxide Electrode for Electrochemical Capacitors. J. Phys. Chem. C 2011, 115, 20689-20695.
    13. Pasquier, A. D.; Plitz, I.; Gural, J.; Menocal, S.; Amatucci, G. Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes. J. Power Sources 2003, 113, 62-71.
    14. Gamby, J.; Taberna, P. L.; Simon, P.; Fauvarque, J. F.; Chesneau, M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 2001, 101, 109-116.
    15. Merino, C.; Soto, P.; Ortego, V. E.; Gomez de Salazar, J. M.; Pico, F.; Rojo, J. M. Carbon nanofibres and activated carbon nanofibers as electrodes in supercapacitors. Carbon 2005, 43, 551-557.
    16. Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, Motoo.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as supercapacitor electrodes. Nature Materials 2006, 5, 987-994.
    17. Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C 2009, 113, 13103-13107.
    18. Choi, H. J.; Jung, S. M.; Seo, J. M.; Chang, D. W.; Dai, L.; Baek, J. B. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 2012, 1, 534-551.
    19. Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J. et al. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537-1541.
    20. Chmiola, J.; Yushin, G.; Dash, R.; Gogotsi, Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power Sources 2006, 158, 765-772.
    21. Probatle, H.; Wiener, M.; Fricke, J. Carbon Aerogels for Electrochemical Double Layer Capacitors. J. Porous Mater. 2003, 10, 213-222.
    22. Cooper, A. M.; Pletcher, D.; Walsh, F. C. Chem. Rev. 1990, 837.
    23. Marsan, B.; Fradette, N.; Beaudoin, C. Physicochemical and Electrochemical Properties of CuCo2O4 Electrodes Prepared by Thermal Decomposition for Oxygen Evolution. J. Electrochem. Soc. 1992, 139, 1889-1896.
    24. Zheng, J. P.; Cygan, P. J.; Jow, T. R. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J. Electrochem. Soc. 1995, 142, 2699-2703.
    25. Mattos-Costa, F. I.; Lima-Neto, P.; Machado, S. A. S.; Avaca, L. A. Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium. Electrochim. Acta 1998, 44, 1515-1523.
    26. Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589
    27. Armand, M. B. Second International meeting on Solid Electrolytes Extended Abstracts. St. Andrews Ecosse, 1978.
    28. Armand, M. B. Fast Ion Transport in Solids. New York, 1979.
    29. Kyotani, T.; Nagai, T.; Inoue, S.; Tomita, A. Formation of New Type of Porous Carbon by Carbonization in Zeolite Nanochannels. Chem. Mater. 1997, 9, 609-615.
    30. Shi, H. Activated carbons and double layer capacitance. Electrochim. Acta 1996, 41, 1633-1639.
    31. Yang, H.; Yoshio, M.; Isono, K.; Kuramoto, R. Improvement of Commericial Activated Carbon and Its Application in Electric Double Layer Capacitors. Electrochem. Solid-State Lett. 2002, 5, A141-A144.
    32. Janes, A.; Kuring, H.; Lust, E. Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon, 2007, 1226-1233.
    33. Endo, M.; Maeda, T.; Takeda, T.; Kim, Y. J.; Koshiba, K.; Hara, H.; Dresselhaus, M. S. Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes. J. Electrochem. Soc. 2001, 148, A910-A914.
    34. Weng, T. C.; Teng, H. Characterization of High Porosity Carbon Electrodes Derived from Mesophase Pitch for Electric Double-Layer Capacitors. J. Electrochem. Soc. 2001, 148, A368-A373.
    35. Endo, M.; Kim, Y. J.; Maeda, T.; Koshiba, K.; Katayama, K.; Dresselhaus, M. S. Morphological effect on the electrochemical behavior of electric double-layer capacitors. J. Mater. Res., 2001, 16, 3402.
    36. Kierzek, K.; Frackwiak, E.; Lota, G.; Gryglewicz, G.; Machnikowski, J. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim. Acta 2004, 49, 515-523.
    37. Teng, H.; Chang, Y.; Hsich, C. Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching. Carbon, 2001, 39, 1981-1987.
    38. Endo, M.; Kim, Y. J.; Takeda, T.; Maeda, T.; Hayashi, T.; Koshiba, K.; Hara, H.; Dresselhaus, M. S. Poly(vinlidene chloride)-Based Carbon as an Electrode Material for High Power Capacitors with an Aqueous Electrolyte. J. Electrochem. Soc. 2001, 148, A1135-A1140.
    39. Shiraishi, S.; Kurihara, H.; Oya, A. Preparation and Electric Double Layer Capacitance of Mesoporous Carbon. Carbon Sci. 2001, 1, 133-137.
    40. Shiraishi, S.; Kurihara, H.; Shi, L.; Nakayama, T.; Oya, A. Electric Double-Layer Capacitance of Meso/Macroporous Activated Carbon Fibers Prepared by the Blending Method I. Nickel-Loaded Activaated Carbon Fibers in Propylene Carbonate Solution Containing LiClO4 Salt. J. Electrochem. Soc. 2002, 149, A855-A861.
    41. Kim, Y.; Abe, Y.; Yanagiura, T.; Park, K.; Shimizu, M.; Iwazaki, T.; Nakagawa, S.; Endo, M.; Dresseihaus, M. S. Easy perparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon, 2007, 45, 2116-2125.
    42. Hou, P. X.; Yamazaki, T.; Orikasa, H.; Kyotani, T. An easy method for the synthesis of ordered microporous carbons by the template technique. Carbon, 2005, 43, 2624-2627.
    43. Nishihara, H.; Itoi, H.; Kogure, T.; Hou, P.; Touhara, H.; Okino, F.; Kyotani, T. Investigation of the Ion Storage/Transfer Behavior in an Electrical Double-Layer Capacitor by Using Ordered Microporous Carbons as Model Materials. Chem. Eur. J. 2009, 15, 5355-5363.
    44. Wang, H.; Gao, Q.; Hu, J.; Chen, Z. High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance. Carbon, 2009, 47, 2259-2268.
    45. Morishita, T.; Tsumura, T.; Toyoda, M.; Przepiorski, J.; Morawski, A. W.; Konno, H.; Inagaki, M. A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon, 2010, 48, 2690-2707.
    46. Morishita, T.; Soneda, Y.; Tsumura, T.; Inagaki, M. Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon, 2006, 44, 2360-2367.
    47. Fernandez, J. A.; Morishita, T.; Toyoda, M.; Inagaki, M.; Stoeckli, F.; Centeno, T. A. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J. Power Sources 2008, 175, 675-679.
    48. Gogotsi, Y.; Nikitin, A.; Ye, H.; Zou, W.; Fischer, J.E.; Yi, B.; Foley, H. C.; Barsoum, M.W. Nanoporous carbide-derived carbon with tunable pore size. Nature Materials 2003, 2, 591-594.
    49. Gogotsi, Y.; Dash, R.K.; Yushin, G.; Yildirim, T.; Laudisio, G.; Fischer J.E. Tailoring of Nanoscale Porosity in Carbide-Derived Carbons for Hydrogen Storage. J. Am. Chem. Soc. 2005, 127, 16006-16007.
    50. Dash, R.K.; Yushin, G.; Gogotsi, Y. Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide. Micropor. Mesopor. Mater. 2005, 86, 50-57.
    51. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Porter, C.; Simon, P.; Taberna, P.L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science 2006, 313, 1760-1763.
    52. Illán-Gómez, M. J.; García-García, A.; Salinas-Martínez de Lecea, C.; Linares-Solano. A. Activated Carbons from Spanish Coals. 2. Chemical Activation. Energy Fuels, 1996, 10, 1108-1114.
    53. Ahmadpour, A.; Do, D. D.; The preparation of active carbons from coal by chemical and physical activation. Carbon, 1996, 34, 471-479.
    54. Huang, C. W.; Hsieh, C. T.; Kuo, P. L.; Teng, H. S. Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. J. Mater. Chem. 2012, 22, 7314.
    55. Brunauer, S. The Adsorption of Gases and Vapor. Physical Adsorption, Princeton University, Princeton, Now York, 1943, 1.
    56. Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angew. Chem. Int. Ed. 1999, 38, 56-77.
    57. Brunaller, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 390.
    58. Tarazona, P.; Marconi, U. M. B.; Evans, R. Mol. Phys. 1987, 60, 543.
    59. Lee S. M.; Chen C. Y.; Wang C. C. The study on the conductivity and morphology of polyurethaneurea electrolytes based on poly(ethylene glycol) 2000 and LiClO4. Electrochim. Acta 2003, 48, 3699-3708.
    60. Lee, S. M.; Chena, C. Y.; Wang, C. C. The effect of the length of the oxyethylene chain on the conductivity of the polyurethaneurea electrolyte. Electrochim. Acta 2004, 49, 4907-4913.
    61. Wang, H. L.; Kao, H. M.; Digar, M.; Wen, T. C. FTIR and Solid State 13C NMR Studies on the Interaction of Lithium Cations with Polyether Poly(urethane urea). Macromolecules 2001, 34, 529-537.
    62. Wu, C. G.; Wu, C. H.; Lu, M. I.; Chuang, H. J. New Solid Polymer Electrolytes Based on PEO/PAN Hybrids. J. Appl. Polym. Sci. 2005, 99, 1530-1540.
    63. Magistris, A.; Singh, K. PEO-Based Polymer Electrolytes. Polymer International 1992, 277-280.
    64. Gnanaraj, J. S.; Karekar, R. N.; Skaria, S.; Rajan, C. R.; Ponrathnam, S. Studies on comb-like polymer blend with poly(ethylene oxide)-lithium perchlorate salt complex electrolyte. Polymer, 1997, 38, 3709-3712.
    65. Qi, L.; Lin, Y.; Jing, X.; Wang, F. Study of the conductivity and side chain mobility of a comb-like polymer electrolyte using the dynamic mechanical method. Solid State Ionics, 2001,139, 293-301.
    66. Ikeda, Y.; Wada, Y.; Matoba, Y.; Murakami, S.; Kohjiya, S. Characterization of comb-shaped high molecular weight poly(oxyethylene) with tri(oxyethylene) side chains for a polymer solid electrolyte. Electrochim. Acta 2000, 45, 1167-1174.
    67. Houa, W. H.; Chena, C. Y.; Wang, C. C. The environment of lithium ions and conductivity of comb-like polymer electrolyte with a chelating functional group. Polymer, 2003, 44, 2983-2991.
    68. Yang, H. Y.; Wu, G.; Chen, H.; Yuan, F.; Wang, M.; Fu, R. J. Preparation and Ionic Conductivity of Solid Polymer Electrolyte Based on Polyacrylonitrile-Polyethylene Oxide. J. Appl. Polym. Sci. 2006, 101, 461-464.
    69. Kuo, P. L.; Liang, W. J.; Lin, C. L. Preparation and Ionic Conductivity of Solid Polymer Electrolytes Based on Segmented Polysiloxane-Modified Polyurethane. Macromol. Chem. Phys. 2002, 203, 230-237.
    70. Liang, W. J.; Kuo, C. L.; Lin, C. L.; Kuo, P. L. Solid Polymer Electrolytes. IV. Preparation and Characterization of Novel Crosslinked Epoxy-Siloxane Polymer Complexes as Polymer Electrolytes. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 1226-1235.
    71. Liang, W. J.; Kuo, P. L. Solid polymer electrolytes VIII: effect of LiClO4-doped level on the microstructure and ionic conductivity of a chemical-covalently polyether-siloxane hybrid electrolyte. Polymer, 2004, 45, 1617-1626.
    72. Fontanella, J. J.; Wintersgill, M. C.; Calame, J.P. Electrical relaxation in pure and alkali metal thiocyanate complexed poly(ethylene oxide). Solid State Iottics 1983, 8, 333-339
    73. Kelly, E.; Owen, J. R.; Steele, B. C. H. Poly(Ethylene Oxide) Electrolytes For Operation At Near Room Temperature. J. Power Sources 1985, 14, 13-21.
    74. Ito, Y.; Kanehori, K.; Miyauchi, K.; Kudo, T. Ionic conductivity of electrolytes formed from PEO-LiCF3SO a complex with low molecular weight poly(ethylene glycol). J. Mater. Sci. 1987, 22, 1845-1849.
    75. Nagasubramanian, G.; Stefano, S. D. 12-Crown‐4 Ether‐Assisted Enhance
    -ment of Ionic Conductivity and Interfacial Kinetics in Polyethylene Oxide Electrolytes. J. Electrochem. Soc. 1990, 137, 3830-3835.
    76. Chaa, E. H.; Macfarlane, D. R.; Forsythc, M.; Leed, C. W. Ionic conductivity studies of polymeric electrolytes containing lithium salt with plasticizer. Electrochim. Acta 2004, 50, 335-338.
    77. Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, A. I. Ionic Conductivity of Hybrid Films Based on Polyacrylonitrile and Their Battery Application. J. Appl. Polym. Sci. 1982, 27, 4191-4198.
    78. Choe, H. S.; Carroll, B. G.; Pasquariello, D. M.; Abraham, K. M. Characterization of Some Polyacrylonitrile-Based Electrolytes. Chem. Mater. 1997, 9, 369-379.
    79. Wang, Z.; Huang, B.; Huang, H.; Chen, L.; Xue, R.; Wang, F. O. Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and Infrared Spectroscopy. Electrochim. Acta 1996, 41, 1443-1446.
    80. Starkey, S. R.; Roger Frech, R. Plasticizer interactions with polymer and salt in propylene carbonate-poly(acrylonitrile)4ithium triflate. Electrochim. Acta 1996, 42, 471-474.
    81. Ferry, A.; Edman, L.; Forsyth, M.; MacFarlane, D. R.; Sun, J. NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN. Electrochim. Acta 2000, 45, 1237-1242.
    82. Iijima, T.; Toyoguchi, Y.; Eda, N. Denki Kagaku, 1985, 53, 619.
    83. Appetecchi, G. B.; Croce, F.; Scrosati, B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based Gel electrolytes. Electrochim. Acta 1995, 40, 991-997.
    84. Bohnke, O.; Rousselot, C.; Gillet, P. A.; Truche, C. Gel Electrolyte for Solid-State Electrochromic Cell. J. Electrochem. Soc. 1992, 139, 1862-1865.
    85. Rhoo, H. J.; Kim, H. T.; J Park, J. K.; Hwang, T. S. Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes. Electrochim. Acta 1997, 42, 1571-1579.
    86. Watanabe, M.; Kanba, M.; Matsuda, H.; Tsunemi, K.; Mizoguchi, K.; Tsuchida, K.; Shinohara, I. High Lithium Ionic Conductivity of Polymeric Solid Electrolytes. Makromol. Chem., Rapid Commun. 1981, 2,741-744
    87. Tsuchida, E.; Ohno, H.; Tsunemi K. Conduction of lithium ions in polyvinylidene fluoride and its derivatives-I. Electrochim. Acta 1983, 28, 591-595.
    88. Saikia, D.; Kumar, A. Ionic conduction in P(VDF-HFP)/PVDF-(PC+DEC)
    -LiClO4 polymer gel electrolytes. Electrochim. Acta 2004, 49, 2581-2589.
    89. Kima, H. S.; Periasamy, P.; Moon, S. I. Electrochemical properties of the Li-ion polymer batteries with P(VdF-co-HFP)-based gel polymer electrolyte. J. Power Sources 2005, 141, 239-297.
    90. Sukeshini, A. M.; Nishimoto, A.; Watanabe, M. Transport and electrochemical characterization of plasticized poly(viny1 chloride) solid electrolytes. Solid State Iottics 1996, 385-393.
    91. Wang, Z.; Huang, B.; Wang, S.; Xue, R.; Huang, X.; Chen, L. Competition Between the Plasticizer and Polymer on Associating with Li+ Ions in Polyacrylonitrile‐Based Electrolytes. J. Electrochem Soc. 1997, 144, 778-786.
    92. Hamann, C. H.; Hamnett, A.; Vielstich, W.; Electrochemistry, Wiley-Vch :New York, 1998.
    93. Young, H. D. Physics, Addison-Wesley Publishing Co. :New York, 1992.
    94. Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamental and Application, John Wiley & Sons, Canada, 1980.
    95. Conway, B.E. Electrochemical supercapacitors scientific fundamentals and technological applications, Kluwer Academic, New York, 1999, 105.

    下載圖示 校內:2018-08-14公開
    校外:2018-08-14公開
    QR CODE