| 研究生: |
高培勛 Kao, Pei-Hsun |
|---|---|
| 論文名稱: |
應用CRISPR干擾技術於萊茵衣藻之生物煉製 Using CRISPRi-mediated genes regulation in Chlamydomonas reinhardtii for biorefinery |
| 指導教授: |
吳意珣
Ng, I-Son |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | CRISPR/dCas9 、微藻 、萊茵衣藻 、生物煉製 、基因調控 |
| 外文關鍵詞: | CRISPR/dCas9, Microalgae, Chlamydomonas reinhardtii, Biorefinery, Gene regulation |
| 相關次數: | 點閱:94 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
常間回文重複序列叢集干擾系統 (CRISPRi) 是一套新穎的基因干擾技術。此方式首次被利用於微藻 Chlamydomonas reinhardtii CC-400,以調控外源提供的紅色螢光蛋白 (RFP) 基因表達作為展示概念,再以抑制內生磷酸烯醇丙酮酸羧化酶 (PEPC1) 基因作為實際應用。由 RFP 研究分析,CRISPRi 介導的基因調控,在 C. reinhardtii 中的實現效率可達 94%,基於本研究 sgRNA 之靶向位點,仍有 19% 的抑制效率,並且可持續至少 7 代的遺傳穩定性。以 CRISPRi 干擾下調 PEPC1 基因達成控制著進入 TCA 循環的碳通量,由基質互相競爭碳量的分配促進甘油二酯醯基轉移酶 (DGAT) 基因表達並增加油脂合成。實驗結果顯示,所有 CrPEPC1 下調株均具有較低的葉綠素表現水平,在生物質量和油脂累積率則有優越表現,最佳的介導株擁有佔細胞乾重 28.5% 的油脂總量與 34.9 mg/L/day 的油脂產率,相比野生型分別提升了高達 74.4% 和 94.2%。本研究亦調控涉及類胡蘿蔔素合成途徑的關鍵 e-環化酶基因 (LCYe),CrLCYe 下調株在 -胡蘿蔔素的生產有顯著變化,其產量 2244.3 ug/g,相比於野生型提升了 41.3%。綜合上述,基於 CRISPRi 系統的基因抑制可適用於衣藻 (C. reinhardtii),並且開拓了提高微藻生產高值化產品的產量,濃度和產率的新技術途徑。
In this study, CRISPRi (clustered regularly interspaced short palindromic repeats interference) was used for the first time to regulate expression of exogenously supplied rfp (red fluorescene protein) gene as a proof-of-concept, and endogenous phosphoenolpyruvate carboxylase (PEPC1) gene as a proof-of-function in Chlamydomonas reinhardtii CC-400. Based on the design of sgRNA binding site, the repression efficiency is about 19%. The application rate of 94% and stability of 7 generations via CRISPRi mediated gene regulation in C. reinhardtii have been demonstrated by RFP. Gene PEPC1 encoding proteins are essential for controlling the carbon flux that enters the TCA cycle and plays a crucial role in carbon partitioning of substrates in competition thus to up-regulate of diglyceride acyltransferase (DGAT) with more lipids synthesis. All CrPEPC1 down-regulated strains have lower chlorophyll colour, but higher biomass concentration and lipid accumulation rate. The outstanding strain generated the highest lipid content and productivity of 28.5% on dry cell weight (DCW) and 34.9 mg/L/day, respectively. This is about 74.4% and 94.2% higher than that of the wild-type. Another gene e-cyclase (LCYe) involving in carotenoid biosynthetic pathway was also tested in the study. The CrLCYe disturbed strains showed significant changes in -carotene production upto 2244.3 ug/g, which yield is 41.3% higher than that of the wide-type. The present results revealed that CRISPRi based transcriptional silencing was applicable in C. reinhardtii and expanded the way to improve the yield, titer and productivity of microalgae-based high-value products.
[1] Haag, A. L., Algae bloom again. Nature 2007, 447, 520-521.
[2] Li, Y., Horsman, M., Wu, N., Lan, C. Q., Dubois-Calero, N., Biofuels from microalgae. Biotechnology Progress 2008, 24, 815-820.
[3] Yen, H. W., Hu, I. C., Chen, C. Y., Ho, S. H., et al., Microalgae-based biorefinery-from biofuels to natural products. Bioresource Technology 2013, 135, 166-174.
[4] Radakovits, R., Jinkerson, R. E., Darzins, A., Posewitz, M. C., Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 2010, 9, 486-501.
[5] Ahmad, A., Yasin, N. M., Derek, C., Lim, J., Microalgae as a sustainable energy source for biodiesel production: a review. Renewable and Sustainable Energy Reviews 2011, 15, 584-593.
[6] Enzing, C., Nooijen, A., Eggink, G., Springer, J., Wijffels, R. H., Algae and genetic modification : research, production and risks. Technopolis Group, Amsterdam 2012.
[7] Gimpel, J. A., Henríquez, V., Mayfield, S. P., In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Frontiers in Microbiology 2015, 6.
[8] Kumar, A., Perrine, Z., Stroff, C., L Postier, B., et al., Molecular tools for bioengineering eukaryotic microalgae. Current Biotechnology 2016, 5, 93-108.
[9] Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471, 602-607.
[10] Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816-821.
[11] Cong, L., Ran, F. A., Cox, D., Lin, S., et al., Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819-823.
[12] DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research 2013, 41, 4336-4343.
[13] Friedland, A. E., Tzur, Y. B., Esvelt, K. M., Colaiácovo, M. P., et al., Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods 2013, 10, 741-743.
[14] Gratz, S. J., Cummings, A. M., Nguyen, J. N., Hamm, D. C., et al., Genome engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease. Genetics 2013, 194, 1029-1035.
[15] Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., et al., efficient in vivo genome editing using RNA-guided nucleases. Nature Biotechnology 2013, 31, 227-229.
[16] Jiang, W., Zhou, H., Bi, H., Fromm, M., et al., Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 2013, 41, e188-e188.
[17] Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013, 153, 910-918.
[18] Jiang, W., Brueggeman, A. J., Horken, K. M., Plucinak, T. M., Weeks, D. P., Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryotic Cell 2014, 13, 1465-1469.
[19] Baek, K., Kim, D. H., Jeong, J., Sim, S. J., et al., DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Scientific Reports 2016, 6, 30620.
[20] Nymark, M., Sharma, A. K., Sparstad, T., Bones, A. M., Winge, P., A CRISPR/Cas9 system adapted for gene editing in marine algae. Scientific Reports 2016, 6, 24951.
[21] Shin, S. E., Lim, J. M., Koh, H. G., Kim, E. K., et al., CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports 2016, 6, 27810.
[22] Wang, Q., Lu, Y., Xin, Y., Wei, L., et al., Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. The Plant Journal 2016, 88, 1071-1081.
[23] Gordon, G. C., Korosh, T. C., Cameron, J. C., Markley, A. L., et al., CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metabolic Engineering 2016, 38, 170-179.
[24] Huang, C.-H., Shen, C. R., Li, H., Sung, L.-Y., et al., CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microbial Cell Factories 2016, 15, 196.
[25] Kamm, B., Kamm, M., Principles of biorefineries. Applied Microbiology and Biotechnology 2004, 64, 137-145.
[26] Harris, P. V., Xu, F., Kreel, N. E., Kang, C., Fukuyama, S., New enzyme insights drive advances in commercial ethanol production. Current Opinion in Chemical Biology 2014, 19, 162-170.
[27] Hong, K. K., Nielsen, J., Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cellular and Molecular Life Sciences : CMLS 2012, 69, 2671-2690.
[28] Miyamoto, K., Renewable biological systems for alternative sustainable energy production / edited. Food and Agriculture Organization of the United Nations, Rome 1997.
[29] Skjanes, K., Lindblad, P., Muller, J., BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomolecular Engineering 2007, 24, 405-413.
[30] Sheehan, J., Dunahay, T., Benemann, J., Roessler, P., Look back at the U.S. department of energy's aquatic species program: biodiesel from algae. NREL 1998.
[31] Chisti, Y., Biodiesel from microalgae. Biotechnology Advances 2007, 25, 294-306.
[32] Gouveia, L., Oliveira, A. C., Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology 2009, 36, 269-274.
[33] Gong, M., Bassi, A., Carotenoids from microalgae: A review of recent developments. Biotechnology Advances 2016, 34, 1396-1412.
[34] Zhang, J., Sun, Z., Sun, P., Chen, T., Chen, F., Microalgal carotenoids: beneficial effects and potential in human health. Food & Function 2014, 5, 413-425.
[35] Orosa, M., Torres, E., Fidalgo, P., Abalde, J., Production and analysis of secondary carotenoids in green algae. Journal of Applied Phycology 2000, 12, 553-556.
[36] Chen, F., High cell density culture of microalgae in heterotrophic growth. Trends in Biotechnology 1996, 14, 421-426.
[37] Shi, X.-M., Chen, F., Yuan, J.-P., Chen, H., Heterotrophic production of lutein by selected Chlorella strains. Journal of Applied Phycology 1997, 9, 445-450.
[38] Li, H. B., Jiang, Y., Chen, F., Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. Journal of Agricultural and Food Chemistry 2002, 50, 1070-1072.
[39] Ip, P. F., Chen, F., Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry 2005, 40, 733-738.
[40] Surzycki, R., Greenham, K., Kitayama, K., Dibal, F., et al., Factors effecting expression of vaccines in microalgae. Biologicals 2009, 37, 133-138.
[41] Shimizu, Y., Microalgal metabolites: a new perspective. Annual Review of Microbiology 1996, 50, 431-465.
[42] Rochaix, J. D., van Dillewijn, J., Transformation of the green alga Chlamydomonas reinhardii with yeast DNA. Nature 1982, 296, 70-72.
[43] Grossman, A. R., Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Current Opinion in Plant Biology 2000, 3, 132-137.
[44] Orsini, M., Cusano, R., Costelli, C., Malavasi, V., et al., Complete genome sequence of chloroplast DNA (cpDNA) of Chlorella sorokiniana. Mitochondrial DNA Part A 2016, 27, 838-839.
[45] Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., et al., Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 1988, 240, 1534-1538.
[46] Kindle, K. L., High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America 1990, 87, 1228-1232.
[47] Dunahay, T. G., Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. BioTechniques 1993, 15, 452-455, 457-458, 460.
[48] Te, M. R., Lohuis, Miller, D. J., Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. The Plant Journal 1998, 13, 427-435.
[49] Jarvis, E. E., Brown, L. M., Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Current Genetics 1991, 19, 317-321.
[50] Debuchy, R., Purton, S., Rochaix, J. D., The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. The EMBO Journal 1989, 8, 2803-2809.
[51] Schiedlmeier, B., Schmitt, R., Müller, W., Kirk, M. M., et al., Nuclear transformation of Volvox carteri. Proceedings of the National Academy of Sciences of the United States of America 1994, 91, 5080-5084.
[52] Dawson, H. N., Burlingame, R., Cannons, A. C., Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Current Microbiology 1997, 35, 356-362.
[53] Feng, S., Xue, L., Liu, H., Lu, P., Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Molecular Biology Reports 2009, 36, 1433-1439.
[54] Shimogawara, K., Fujiwara, S., Grossman, A., Usuda, H., High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 1998, 148, 1821-1828.
[55] Minoda, A., Sakagami, R., Yagisawa, F., Kuroiwa, T., Tanaka, K., Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant & Cell Physiology 2004, 45, 667-671.
[56] Wang, C., Wang, Y., Su, Q., Gao, X., Transient expression of the GUS gene in a unicellular marine green alga,Chlorella sp.MACC/C95, via electroporation. Biotechnology and Bioprocess Engineering 2007, 12, 180-183.
[57] Kilian, O., Benemann, C. S., Niyogi, K. K., Vick, B., High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, 21265-21269.
[58] Lu, Y., Li, J., Xue, L., Yan, H., et al., A duplicated carbonic anhydrase 1 (DCA1) promoter mediates the nitrate reductase gene switch of Dunaliella salina. Journal of Applied Phycology 2011, 23, 673-680.
[59] Kumar, S. V., Misquitta, R. W., Reddy, V. S., Rao, B. J., Rajam, M. V., Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Science 2004, 166, 731-738.
[60] Teng, C., Qin, S., Liu, J., Yu, D., et al., Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. Journal of Applied Phycology 2002, 14, 497-500.
[61] Lerche, K., Hallmann, A., Stable nuclear transformation of Gonium pectorale. BMC Biotechnology 2009, 9, 64.
[62] Dunahay, T. G., Jarvis, E. E., Roessler, P. G., Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. Journal of Phycology 1995, 31, 1004-1012.
[63] Apt, K. E., Kroth-Pancic, P. G., Grossman, A. R., Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Molecular & General Genetics : MGG 1996, 252, 572-579.
[64] Fischer, H., Robl, I., Sumper, M., Kröger, N., Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae). Journal of Phycology 1999, 35, 113-120.
[65] Poulsen, N., Chesley, P. M., Kröger, N., Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). Journal of Phycology 2006, 42, 1059-1065.
[66] Abe, J., Hori, S., Tsuchikane, Y., Kitao, N., et al., Stable nuclear transformation of the Closterium peracerosum-strigosum-littorale complex. Plant & Cell Physiology 2011, 52, 1676-1685.
[67] Miyagawa, A., Okami, T., Kira, N., Yamaguchi, H., et al., Stable nuclear transformation of the diatom Chaetoceros sp. Phycological Research 2011, 59, 113-119.
[68] Inoue, K., Dreyfuss, B. W., Kindle, K. L., Stern, D. B., et al., Ccs1, a nuclear gene required for the post-translational assembly of chloroplast c-type cytochromes. The Journal of Biological Chemistry 1997, 272, 31747-31754.
[69] Cui, Y., Jiang, P., Wang, J., Li, F., et al., Genetic transformation of Platymonas (Tetraselmis) subcordiformis (Prasinophyceae, Chlorophyta) using particle bombardment and glass-bead agitation. Chinese Journal of Oceanology and Limnology 2012, 30, 471-475.
[70] Kathiresan, S., Chandrashekar, A., Ravishankar, G. A., Sarada, R., Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). Journal of Phycology 2009, 45, 642-649.
[71] Tan, C., Qin, S., Zhang, Q., Jiang, P., Zhao, F., Establishment of a micro-particle bombardment transformation system for Dunaliella salina. Journal of Microbiology 2005, 43, 361-365.
[72] Sun, Y., Gao, X., Li, Q., Zhang, Q., Xu, Z., Functional complementation of a nitrate reductase defective mutant of a green alga Dunaliella viridis by introducing the nitrate reductase gene. Gene 2006, 377, 140-149.
[73] Steinbrenner, J., Sandmann, G., Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 2006, 72, 7477-7484.
[74] Chow, K.-C., Tung, W. L., Electrotransformation of Chlorella vulgaris. Plant Cell Reports 1999, 18, 778-780.
[75] Derelle, E., Ferraz, C., Rombauts, S., Rouze, P., et al., Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 11647-11652.
[76] Jiang, P., Qin, S., Tseng, C. K., Expression of the lacZ reporter gene in sporophytes of the seaweed Laminaria japonica (Phaeophyceae) by gametophyte-targeted transformation. Plant Cell Reports 2003, 21, 1211-1216.
[77] Song, Q., Daozhan, Y., Peng, J., Changying, T., Chengkui, Z., Stable expression of lacZ reporter gene in seaweed Undaria pinnatifida. High Technology Letters 2003, 7.
[78] Chen, H. L., Li, S. S., Huang, R., Tsai, H. J., Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae) 1. Journal of Phycology 2008, 44, 768-776.
[79] Lapidot, M., Raveh, D., Sivan, A., Arad, S. M., Shapira, M., Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 2002, 129, 7-12.
[80] Pulz, O., Gross, W., Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 2004, 65, 635-648.
[81] Walker, T. L., Purton, S., Becker, D. K., Collet, C., Microalgae as bioreactors. Plant Cell Reports 2005, 24, 629-641.
[82] Armbrust, E. V., Identification of a new gene family expressed during the onset of sexual reproduction in the centric diatom Thalassiosira weissflogii. Applied and Environmental Microbiology 1999, 65, 3121-3128.
[83] El-Sheekh, M. M., Stable Transformation of the intact cells of Chlorella kessleri with high velocity microprojectiles. Biologia Plantarum 1999, 42, 209-216.
[84] Huang, X., Weber, J. C., Hinson, T. K., Mathieson, A. C., Minocha, S. C., Botanica Marina 1996, p. 467.
[85] Kübler, J., Minocha, S., Mathieson, A., Transient expression of the GUS reporter gene in protoplasts of Porphyra miniata (Rhodophyta). Journal of Marine Biotechnology 1994, 1, 165-169.
[86] Kurtzman, A., Cheney, D., Direct gene transfer and transient expression in a marine red alga using the biolistic method. Journal of Phycology 1991, 27, 42.
[87] Gan, S. Y., Qin, S., Othman, R. Y., Yu, D., Phang, S.-M., Transient expression of lacZ in particle bombarded Gracilaria changii (Gracilariales, Rhodophyta). Journal of Applied Phycology 2003, 15, 345-349.
[88] Doetsch, N. A., Favreau, M. R., Kuscuoglu, N., Thompson, M. D., Hallick, R. B., Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Current Genetics 2001, 39, 49-60.
[89] Muto, M., Fukuda, Y., Nemoto, M., Yoshino, T., et al., Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580—A high triglyceride producer. Marine Biotechnology 2013, 15, 48-55.
[90] Bai, L. L., Yin, W. B., Chen, Y. H., Niu, L. L., et al., A new strategy to produce a defensin: stable production of mutated NP-1 in nitrate reductase-deficient Chlorella ellipsoidea. PloS one 2013, 8, e54966.
[91] Rasala, B. A., Lee, P. A., Shen, Z., Briggs, S. P., et al., Robust expression and secretion of xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PloS one 2012, 7, e43349.
[92] Fuhrmann, M., Hausherr, A., Ferbitz, L., Schödl, T., et al., Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant molecular biology 2004, 55, 869-881.
[93] Noor-Mohammadi, S., Pourmir, A., Johannes, T. W., Method for assembling and expressing multiple genes in the nucleus of microalgae. Biotechnology Letters 2014, 36, 561-566.
[94] Bruggeman, A. J., Kuehler, D., Weeks, D. P., Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant Biotechnology Journal 2014, 12, 894-902.
[95] Kim, D.-H., Kim, Y. T., Cho, J. J., Bae, J.-H., et al., Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Marine Biotechnology 2002, 4, 63-73.
[96] Liu, L., Wang, Y., Zhang, Y., Chen, X., et al., Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea. Molecular Biotechnology 2013, 54, 211-219.
[97] Miyahara, M., Aoi, M., Inoue-Kashino, N., Kashino, Y., Ifuku, K., Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation. Bioscience, Biotechnology, and Biochemistry 2013, 77, 874-876.
[98] Kilian, O., Benemann, C. S., Niyogi, K. K., Vick, B., High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proceedings of the National Academy of Sciences 2011, 108, 21265-21269.
[99] Li, F., Gao, D., Hu, H., High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product. Bioscience, Biotechnology, and Biochemistry 2014, 78, 812-817.
[100] Zorin, B., Grundman, O., Khozin-Goldberg, I., Leu, S., et al., Development of a nuclear transformation system for oleaginous green alga Lobosphaera (Parietochloris) incisa and genetic complementation of a mutant strain, deficient in arachidonic acid biosynthesis. PloS one 2014, 9, e105223.
[101] San Cha, T., Yee, W., Aziz, A., Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World Journal of Microbiology and Biotechnology 2012, 28, 1771-1779.
[102] Pratheesh, P., Vineetha, M., Kurup, G. M., An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Molecular Biotechnology 2014, 56, 507-515.
[103] Rathod, J. P., Prakash, G., Pandit, R., Lali, A. M., Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri. Photosynthesis Research 2013, 118, 141-146.
[104] Úbeda-Mínguez, P., Chileh, T., Dautor, Y., García-Maroto, F., Alonso, D. L., Tools for microalgal biotechnology: development of an optimized transformation method for an industrially promising microalga—Tetraselmis chuii. Journal of Applied Phycology 2015, 27, 223-232.
[105] Gregory, J. A., Topol, A. B., Doerner, D. Z., Mayfield, S., Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Applied and Environmental Microbiology 2013, 79, 3917-3925.
[106] Dreesen, I. A., Charpin-El Hamri, G., Fussenegger, M., Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. Journal of Biotechnology 2010, 145, 273-280.
[107] Demurtas, O. C., Massa, S., Ferrante, P., Venuti, A., et al., A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One 2013, 8, e61473.
[108] Niu, Y., Zhang, M., Xie, W., Li, J., et al., A new inducible expression system in a transformed green alga, Chlorella vulgaris. Genetics and Molecular Research 2011, 10, 3427-3434.
[109] Guo, S.-L., Zhao, X.-Q., Tang, Y., Wan, C., et al., Establishment of an efficient genetic transformation system in Scenedesmus obliquus. Journal of Biotechnology 2013, 163, 61-68.
[110] Xie, W. H., Zhu, C. C., Zhang, N. S., Li, D. W., et al., Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutum. Marine Biotechnology 2014, 16, 538-546.
[111] Kindle, K. L., Richards, K. L., Stern, D. B., Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences 1991, 88, 1721-1725.
[112] Newman, S. M., Boynton, J. E., Gillham, N. W., Randolph-Anderson, B. L., et al., Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 1990, 126, 875-888.
[113] Bateman, J., Purton, S., Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Molecular and General Genetics 2000, 263, 404-410.
[114] Ahmad, I., Sharma, A. K., Daniell, H., Kumar, S., Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnology Journal 2015, 13, 540-550.
[115] León, R., Couso, I., Fernández, E., Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. Journal of Biotechnology 2007, 130, 143-152.
[116] Lerche, K., Hallmann, A., Stable nuclear transformation of Pandorina morum. BMC Biotechnology 2014, 14, 1.
[117] Georgianna, D. R., Hannon, M. J., Marcuschi, M., Wu, S., et al., Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Research 2013, 2, 2-9.
[118] Garcia-Echauri, S. A., Cardineau, G. A., TETX: a novel nuclear selection marker for Chlamydomonas reinhardtii transformation. Plant methods 2015, 11, 1.
[119] Harrison, M. M., Jenkins, B. V., O'Connor-Giles, K. M., Wildonger, J., A CRISPR view of development. Genes & Development 2014, 28, 1859-1872.
[120] Hsu, P. D., Lander, E. S., Zhang, F., Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262-1278.
[121] Song, C. W., Lee, J., Lee, S. Y., Genome engineering and gene expression control for bacterial strain development. Biotechnology Journal 2015, 10, 56-68.
[122] Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakata, A., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 1987, 169, 5429-5433.
[123] Mojica, F. J., Diez-Villasenor, C., Soria, E., Juez, G., Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology 2000, 36, 244-246.
[124] Jansen, R., Embden, J. D., Gaastra, W., Schouls, L. M., Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 2002, 43, 1565-1575.
[125] Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J., Soria, E., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution 2005, 60, 174-182.
[126] Barrangou, R., Fremaux, C., Deveau, H., Richards, M., et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709-1712.
[127] Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321, 960-964.
[128] Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research 2011, 39, 9275-9282.
[129] Mali, P., Yang, L., Esvelt, K. M., Aach, J., et al., RNA-guided human genome engineering via Cas9. Science 2013, 339, 823-826.
[130] Jinek, M., East, A., Cheng, A., Lin, S., et al., RNA-programmed genome editing in human cells. Elife 2013, 2, e00471.
[131] Nishimasu, H., Ran, F. A., Hsu, Patrick D., Konermann, S., et al., Crystal structure of cas9 in complex with guide rna and target dna. Cell, 156, 935-949.
[132] Jinek, M., Jiang, F., Taylor, D. W., Sternberg, S. H., et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014, 343, 1247997-1247997.
[133] Sternberg, S. H., LaFrance, B., Kaplan, M., Doudna, J. A., Conformational control of DNA target cleavage by CRISPR–Cas9. Nature 2015, 527, 110-113.
[134] Jiang, F., Taylor, D. W., Chen, J. S., Kornfeld, J. E., et al., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 2016.
[135] Flowers, G. P., Timberlake, A. T., McLean, K. C., Monaghan, J. R., Crews, C. M., Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development (Cambridge, England) 2014, 141, 2165-2171.
[136] Baltimore, D., Berg, P., Botchan, M., Carroll, D., et al., Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 2015, 348, 36-38.
[137] Guo, X., Li, X.-J., Targeted genome editing in primate embryos. Cell Res 2015, 25, 767-768.
[138] Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152, 1173-1183.
[139] Lv, L., Ren, Y. L., Chen, J. C., Wu, Q., Chen, G. Q., Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis. Metabolic Engineering 2015, 29, 160-168.
[140] Elhadi, D., Lv, L., Jiang, X. R., Wu, H., Chen, G. Q., CRISPRi engineering E. coli for morphology diversification. Metabolic Engineering 2016, 38, 358-369.
[141] Li, S., Jendresen, C. B., Grunberger, A., Ronda, C., et al., Enhanced protein and biochemical production using CRISPRi-based growth switches. Metabolic Engineering 2016, 38, 274-284.
[142] Mandegar, M. A., Huebsch, N., Frolov, E. B., Shin, E., et al., CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 2016, 18, 541-553.
[143] Kim, Y. G., Cha, J., Chandrasegaran, S., Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proceedings of the National Academy of Sciences of the United States of America 1996, 93, 1156-1160.
[144] Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010, 186, 757-761.
[145] Palpant, N. J., Dudzinski, D., Zinc finger nucleases: looking toward translation. Gene therapy 2013, 20, 121-127.
[146] Jankele, R., Svoboda, P., TAL effectors: tools for DNA targeting. Briefings in Functional Genomics 2014, 13, 409-419.
[147] Yang, J., Pan, Y., Bowler, C., Zhang, L., Hu, H., Knockdown of phosphoenolpyruvate carboxykinase increases carbon flux to lipid synthesis in Phaeodactylum tricornutum. Algal Research 2016, 15, 50-58.
[148] Wendt, K. E., Ungerer, J., Cobb, R. E., Zhao, H., Pakrasi, H. B., CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microbial Cell Factories 2016, 15, 115.
[149] Yao, L., Cengic, I., Anfelt, J., Hudson, E. P., Multiple gene repression in cyanobacteria using CRISPRi. ACS Synthetic Biology 2015, 5, 207-212.
[150] Li, H., Shen, C. R., Huang, C. H., Sung, L. Y., et al., CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabolic Engineering 2016, 38, 293-302.
[151] Wang, Q., Lu, Y., Xin, Y., Wei, L., et al., Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. The Plant Journal 2016, 88, 1071-1081.
[152] Xing, H. L., Dong, L., Wang, Z. P., Zhang, H. Y., et al., A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology 2014, 14, 327.
[153] Chen, W., Zhang, C., Song, L., Sommerfeld, M., Hu, Q., A high throughput nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods 2009, 77, 41-47.
[154] Lepage, G., Roy, C. C., Direct transesterification of all classes of lipids in a one-step reaction. Journal of Lipid Research 1986, 27, 114-120.
[155] Rath, D., Amlinger, L., Hoekzema, M., Devulapally, P. R., Lundgren, M., Efficient programmable gene silencing by cascade. Nucleic Acids Research 2015, 43, 237-246.
[156] Yao, L., Cengic, I., Anfelt, J., Hudson, E. P., Multiple gene repression in cyanobacteria using CRISPRi. ACS Synthetic Biology 2016, 5, 207-212.
[157] Deng, X., Cai, J., Li, Y., Fei, X., Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii. Biotechnology Letters 2014, 36, 2199-2208.
[158] Fan, J., Cui, Y., Zhou, Y., Wan, M., et al., The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription. Bioresource technology 2014, 164, 214-220.
[159] Xu, Z., Li, J., Guo, X., Jin, S., Zhang, X., Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference. Scientific Reports 2016, 6, 33342.
[160] Guedes, A. C., Amaro, H. M., Malcata, F. X., Microalgae as sources of carotenoids. Marine drugs 2011, 9, 625-644.
[161] Kao, P. H., Ng, I. S., CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresource technology 2017, DOI: 10.1016/j.biortech.2017.04.111.