| 研究生: |
王俊傑 Wang, Chun-Chieh |
|---|---|
| 論文名稱: |
合成兼具氫氧根及亞磷酸官能基之共聚高分子修飾於鈦金屬表面及其表面特性與血液相容性之研究 Studies of Surface Modification of Titanium with Hydroxyl and Phosphonic Acid Containing Copolymers: Synthesis, Characterization, and Application in Resisting Platelet Adhesion |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 鈦 、亞磷酸 、氫氧根官能基 、共聚合 、血液相容性 |
| 外文關鍵詞: | Titanium, Phosphonic acid, Hydroxyl, Copolymerization, Hemocompatibility |
| 相關次數: | 點閱:68 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用化學接枝法(grafting onto)將高分子接枝在基材表面上去改變原本材料的表面性質,並保有材料本身原有性質(bulk property),是很常見的表面改質手法及技術之一。在本篇研究中,為了改善鈦金屬基材表面的血液相容性,利用傳統的自由機共聚合將含有亞磷酸官能基的6-acryloyloxy hexyl phosphonic acid (AcrHPA) 以及末端具備氫氧根官能基之4-hydroxybutyl acrylate (HBA) 合成雙功能性共聚高分子。該共聚高分子的亞磷酸官能基不僅可以和鈦金屬基材表面形成穩定的共價鍵結,還可以藉由高分子的氫氧根官能基提升鈦金屬基材表面之親水性質以達到抑制血小板貼附並達到改善材料表面的血液相容性。
在研究中,使用核磁共振光譜(Nuclear magnetic resonance spectroscopy)對單體及共聚高分子進行結構及組成之鑑定,之後將該共聚高分子分別以自然滴製法(drop-coating)及旋轉塗佈法(spin-coating)覆蓋於鈦金屬基材表面上並加熱使高分子與表面產生共價鍵結反應,並依序利用靜態表面接觸角測量(Static water contact angle analysis)表面親疏水性、掃描式電子顯微鏡(Scanning electron microscope)觀察改質層厚度、電子能譜儀(X-ray photoelectron spectroscopy)分析表面元素組成。最後藉由體外血小板吸附實驗(In vitro platelets adhesion)探討經高分子改質層修飾後之鈦金屬基材表面的血液相容性。由實驗結果可以發現隨著單體HBA的進料比增加,表面的高分子改質層的親水性質也隨之上升,導致鈦金屬基材表面的血液相容性有所改善。在此篇研究中,提供了一個有效的表面改質方法並且成功地使鈦金屬基材表面達到抑制血小板貼附及活化的效果。
Grafting polymer onto the surface has being used as a process to modify the surface properties. In this study, in order to improve hemocompatibility of titanium, the surface of substrates were modified with a layer of novel multi-functional copolymer, which consists of 6-acryloyloxy hexyl phosphonic acid (6-AcrHPA) and 4-hydroxybutyl acrylate (HBA) monomers synthesized by traditional free radical copolymerization. The copolymers do not only bind to titanium surface stably with phosphonic acid function groups, but also prevent platelet adhesion effectively with the hydroxyl function groups, which made surface more hydrophilic. The prepared monomers and polymers were demonstrated by nuclear magnetic resonance spectroscopy (NMR). Then the polymers were drop-coated and spun-coated onto the electropolish-pretreated titanium and heated for covalent-bounded onto the substrate. The obtained modified layers were subsequently characterized by static water contact angle measurements (CA), scanning electron microscope (SEM) to determine the thickness of modified layer, and x-ray photoelectron spectroscopy (XPS). Furthermore, the hemocompatibility of polymer films was characterized through in vitro platelets adhesion assay. The results indicated that no matter which coating method was utilized, the increase of HBA feeding ratio can increase surface hydrophilicity and reduce the degree of platelet adhesion and activation. The surface modification in current study showed an effective strategy for developing platelet compatible titanium-based biomedical devices.
1.David G. Castner, Buddy D. Ratner. Biomedical surface science: Foundations
to frontiers. Surface Science, 2002. 500: p. 28-60.
2.R. E. Baier, A. E. Meyer, J. R. Natieila, R. R. Natielk, J. M. Carter. Surface-Properties Determine Bioadhesive Outcomes - Methods and Results. J Biomed Mater Res 1984. 18: p. 337-355.
3.Cheng, G., Zhang, Z., Chen, S., Bryers, J. D., Jiang, S. Inhibition of bacterial
adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 2007.
28(29): p. 4192-9.
4.Thurston, T. E., Andrades, P., Phillips, R. A., Ray, P. D., Grant, J. H. Safety
Profile of Wire Osteosynthesis in Craniosynostosis Surgery. Journal of Craniofacial Surgery, 2009. 20(4): p. 1154-1158.
5.Kris S. Moe, Robert A. Weisman. Resorbable fixation in facial plastic and head
and neck reconstructive surgery: An initial report on polylactic acid implants. . Laryngoscope, 2001. 111: p. 1697-1701.
6.Klos, K., Sauer, S., Hoffmeier, K., Gras, F., Frober, R., Hofmann, G. O., Muckley,
T. Biomechanical Evaluation of Plate Osteosynthesis of Distal Fibula Fractures with Biodegradable Devices. Foot & Ankle International, 2009. 30(3): p. 243-251.
7.Liu, X., Chu, P., Ding, C. Surface modification of titanium, titanium alloys, and
related materials for biomedical applications. Materials Science and Engineering: R: Reports, 2004. 47(3-4): p. 49-121.
8.Carine Viornery, Harald L. Guenther, Bjo¨rn-Owe Aronsson, Pe´ter Pe´chy,
Pierre Descouts, Michael Gra¨tzel. Osteoblast culture on polished titanium disks modified with phosphonic acids. Journal of Biomedical Materials Research 2002. 62: p. 149-155.
9.Brunette, D. M., Tengvall, P., Textor, M., Thomsen, P. Titanium in Medicine.
2001: Springer
10.Geetha, M., Singh, A. K., Asokamani, R., Gogia, A. K. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science, 2009. 54(3): p. 397-425.
11.R. ADELL, U. LEKHOLM, B. ROCKLER, P.-I. BRANEMARK. A I5-year study of osseointegrated implants in the treatment of the edentulous jaw. Journal of Oral and Maxillofacial Surgery, 1977. 10: p. 387-416.
12.Dohan Ehrenfest, D. M., Coelho, P. G., Kang, B. S., Sul, Y. T., Albrektsson, T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol, 2010. 28(4): p. 198-206.
13.Ries, M. W., Kampmann, C., Rupprecht, H. J., Hintereder, G., Hafner, G., Meyer, J. Nickel release after implantation of the Amplatzer occluder. American Heart Journal, 2003. 145(4): p. 737-41.
14.Huang, H. Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials, 2003. 24(20): p. 3585-3592.
15.Tschernitschek, H., Borchers, L., Geurtsen, W. Nonalloyed titanium as a bioinert metal - A review. Quintessence International, 2005. 36(7-8): p. 523-530.
16.Beuvelot, J., Portet, D., Lecollinet, G., Moreau, M. F., Basle, M. F., Chappard, D., Libouban, H. In Vitro Kinetic Study of Growth and Mineralization of Osteoblast-like Cells (Saos-2) on Titanium Surface Coated With a RGD Functionalized Bisphosphonate. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2009. 90B(2): p. 873-881.
17.Lahav, J. The Functions of Thrombospondin and Its Involvement in Physiology and Pathophysiology. Biochimica Et Biophysica Acta, 1993. 1182(1): p. 1-14.
18.J.M. Courtney, N.M.K. Lamba, S. Sundaram, C.D. Forbes. Biomaterials for Blood-Contacting Applications. Biomaterials 1994. 15: p. 737-744.
19.Nygren, H. Initial reactions of whole blood with hydrophilic and hydrophobic titanium surfaces. Colloids and Surfaces B-Biointerfaces, 1996. 6(4-5): p. 329-333.
20.Vanderleyden, E., Mullens, S., Luyten, J., Dubruel, P. Implantable (Bio)Polymer Coated Titanium Scaffolds: A Review. Current Pharmaceutical Design, 2012. 18(18): p. 2576-2590.
21.Mutin, P. H., Guerrero, G., Vioux, A. Hybrid materials from organophosphorus coupling molecules. Journal of Materials Chemistry, 2005. 15(35-36): p. 3761-3768.
22.Hucknall, A., Rangarajan, S., Chilkoti, A. In Pursuit of Zero: Polymer Brushes that Resist the Adsorption of Proteins. Advanced Materials, 2009. 21(23): p. 2441-2446.
23.Pop-Georgievski, O., Rodriguez-Emmenegger, C., Pereira, A. D., Proks, V., Brynda, E., Rypacek, F. Biomimetic non-fouling surfaces: extending the concepts. Journal of Materials Chemistry B, 2013. 1(22): p. 2859-2867.
24.Rodriguez-Emmenegger, C., Brynda, E., Riedel, T., Houska, M., Subr, V., Alles, A. B., Hasan, E., Gautrot, J. E., Huck, W. T. S. Polymer Brushes Showing Non-Fouling in Blood Plasma Challenge the Currently Accepted Design of Protein Resistant Surfaces. Macromolecular Rapid Communications, 2011. 32(13): p. 952-957.
25.Zhao, C., Li, L. Y., Wang, Q. M., Yu, Q. M., Zheng, J. Effect of Film Thickness on the Antifouling Performance of Poly(hydroxy-functional methacrylates) Grafted Surfaces. Langmuir, 2011. 27(8): p. 4906-4913.
26.Chen, S. F., Li, L. Y., Zhao, C., Zheng, J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
27.Gorbet, M. B., Sefton, M. V. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 2004. 25(26): p. 5681-5703.
28.M. Chatzinikolaidou, M. Laub, H. Rumpf, H. P. Jennissen. Biocoating of Electropolished and Ultra-Hydrophilic Titanium and Cobalt Chromium Molybdenum Alloy Surfaces with Proteins. materials Science & Engineering Technology, 2002. 33: p. 720-727.
29.Larsson, C., Thomsen, P., Aronsson, B. O., Rodahl, M., Lausmaa, J., Kasemo, B., Ericson, L. E. Bone response to surface-modified titanium implants: Studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials, 1996. 17(6): p. 605-616.
30.Yang, B. C., Uchida, M., Kim, H. M., Zhang, X. D., Kokubo, T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials, 2004. 25(6): p. 1003-1010.
31.Branemark, R., Ohrnell, L. O., Nilsson, P., Thomsen, P. Biomechanical characterization of osseointegration during healing: An experimental in vivo study in the rat. Biomaterials, 1997. 18(14): p. 969-978.
32.Pilliar, R. M., Deporter, D. A., Watson, P. A., Valiquette, N. Dental Implant Design - Effect on Bone Remodeling. Journal of Biomedical Materials Research, 1991. 25(4): p. 467-483.
33.Barbosa, J. N., Martins, M. C. L., Freitas, S. C., Goncalves, I. C., Aguas, A. P., Barbosa, M. A. Adhesion of human leukocytes on mixtures of hydroxyl- and methyl-terminated self-assembled monolayers: Effect of blood protein adsorption. Journal of Biomedical Materials Research Part A, 2010. 93A(1): p. 12-19.
34.Bolz, A., Schaldach, M. Artificial-Heart Valves - Improved Blood Compatibility by Pecvd a-Sic-H Coating. Artificial Organs, 1990. 14(4): p. 260-269.
35.Dion, I., Baquey, C., Havlik, P., Monties, J. R. A New Model to Test Platelet-Adhesion under Dynamic Conditions - Application to the Evaluation of a Titanium Nitride Coating. International Journal of Artificial Organs, 1993. 16(7): p. 545-550.
36.XIANGHUI WANG, FENG ZHANG, CHANGRONG LI, LIUJIANG YU, ZHIHONG ZHENG, XIANGHUAI LIU, LIZHI CHEN, HUIMIN WANG. In vivo and in vitro investigation of titanium oxide layers coated on LTI-carbon by IBED. Journal of Materials Science, 2001. 36: p. 2067-2072.
37.Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., Parker, T. L. Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. Journal of Biomedical Materials Research, 2000. 52(2): p. 413-421.
38.I. Dion, F. Rouais, L. Trut, Ch, Baquey, J,R. Monties, P. Havlik. TiN Coating: Surface Characterization and Hemocompatibility. Biomaterials 1993. 14: p. 169-176.
39.Toshio Yuhta, Yukiaki Kikuta, Yoshiniori Mitamura, Kenichi Nakagane, Shun Murabayashi, Ikuya Nishimura. Blood compatibility of sputter-deposited alumina films. Journal of Biomedical Materials Research, 1994. 28: p. 217-224.
40.Ye, S. H., Johnson, C. A., Jr., Woolley, J. R., Murata, H., Gamble, L. J., Ishihara, K., Wagner, W. R. Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids Surf B Biointerfaces, 2010. 79(2): p. 357-64.
41.Harris, L. G., Richards, R. G. Staphylococci and implant surfaces: a review. Injury-International Journal of the Care of the Injured, 2006. 37: p. 3-14.
42.Chen, J., Chen, C., Chen, Z., Chen, J., Li, Q., Huang, N. Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial. J Biomed Mater Res A, 2010. 95(2): p. 341-9.
43.Tebbe, D., Thull, R., Gbureck, U. Influence of spacer length on heparin coupling efficiency and fibrinogen adsorption of modified titanium surfaces. BioMedical Engineering OnLine, 2007. 6: p. 31.
44.Ning-Ping Huang, Gabor Csucs, Kazunori Emoto, Yukio Nagasaki, Kazunori Kataoka, Marcus Textor, Nicholas D. Spencer Covalent attachment of novel poly(ethylene glycol)-poly(DL-lactic acid) copolymeric micelles to TiO2 surfaces. Langmuir 2002. 18: p. 252-258.
45.Maddikeri, R. R., Tosatti, S., Schuler, M., Chessari, S., Textor, M., Richards, R. G., Harris, L. G. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. Journal of Biomedical Materials Research Part A, 2008. 84(2): p. 425-35.
46.Ye, S. H., Johnson, C. A., Jr., Woolley, J. R., Murata, H., Gamble, L. J., Ishihara, K., Wagner, W. R. Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices. Journal of Biomedical Materials Research Part A, 2009. 91(1): p. 18-28.
47.Ye, S. H., Johnson, C. A., Jr., Woolley, J. R., Oh, H. I., Gamble, L. J., Ishihara, K., Wagner, W. R. Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloids Surf B Biointerfaces, 2009. 74(1): p. 96-102.
48.Robert G. Chapman, Emanuele Ostuni, Shuichi Takayama, R. Erik Holmlin, Lin Yan, George M. Whitesides. Surveying for surfaces that resist the adsorption of proteins. Journal of the American Chemical Society, 2000. 122: p. 8303-8304.
49.Rupert Konradi, Bidhari Pidhatika, Andreas Mu¨hlebach, Marcus Textor. Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir 2008. 24: p. 613-616.
50.Bauer, M., Lautenschlaeger, C., Kempe, K., Tauhardt, L., Schubert, U. S., Fischer, D. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromolecular Bioscience, 2012. 12(7): p. 986-998.
51. Zwaal, R. F. A., Comfurius, P., Vandeenen, L. L. M. Membrane Asymmetry and Blood-Coagulation. Nature, 1977. 268(5618): p. 358-360.
52.Plopper, G. Principles of Cell Biology. 2013: Jones & Bartlett Learning.
53.David Samuel Johnston, Sukhpal Sanghera, Miquel Pons, Dennis Chapman. Phospholipid polymers—Synthesis and spectral characteristics. Biochimica et Biophysica Acta - Biomembranes, 1980. 602(1): p. 57-69.
54.Jung, S. C., Lee, K., Kim, B. H. Biocompatibility of plasma polymerized sandblasted large grit and acid titanium surface. Thin Solid Films, 2012. 521: p. 150-154.
55.R. Erik Holmlin, Xiaoxi Chen, Robert G. Chapman, Shuichi Takayama, George M. Whitesides. Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17: p. 2841-2850.
56.Guo, W. H., Zhu, J., Cheng, Z. P., Zhang, Z. B., Zhu, X. L. Anticoagulant Surface of 316 L Stainless Steel Modified by Surface-Initiated Atom Transfer Radical Polymerization. Acs Applied Materials & Interfaces, 2011. 3(5): p. 1675-1680.
57.Jin, W. Q., Yang, L. M., Yang, W., Chen, B., Chen, J. Grafting of HEMA onto dopamine coated stainless steel by Co-60-gamma irradiation method. Radiation Physics and Chemistry, 2014. 105: p. 57-62.
58.Chen, J., Chen, X., Yin, X., Ma, J., Jiang, Z. Y. Bioinspired fabrication of composite pervaporation membranes with high permeation flux and structural stability. Journal of Membrane Science, 2009. 344(1-2): p. 136-143.
59.Shou-Jun Xiao, Marcus Textor, Nicholas D. Spencer. Covalent attachment of cell-adhesive, (Arg-Gly-Asp)-containing peptides to titanium surfaces. Langmuir 1998. 14: p. 5507-5516.
60.Pegg, E. C., Walker, G. S., Scotchford, C. A., Farrar, D., Grant, D. Mono-functional aminosilanes as primers for peptide functionalization. Journal of Biomedical Materials Research Part A, 2009. 90(4): p. 947-58.
61.Alireza Rezania, Robert Johnson, Anthony R. Lefkow, Kevin E. Healy Bioactivation of Metal Oxide Surfaces. 1. Surface Characterization and Cell Response. Langmuir 1999. 15: p. 6931-6939.
62.E. S. Gawalt, M. J. Avaltroni, M. P. Danahy, B. M. Silverman, E. L. Hanson, K. S. Midwood, J. E. Schwarzbauer, J. Schwartz. Bonding organics to Ti alloys: Facilitating human osteoblast attachment and spreading on surgical implant materials corrections. Langmuir 2003. 19: p. 200-204.
63.Nina Adden, Lara J. Gamble, David G. Castner, Andrea Hoffmann, Gerhard Gross, Henning Menzel. Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir 2006. 22: p. 8197-8204.
64.Ellen S. Gawalt, Michael J. Avaltroni, Norbert Koch, Jeffrey Schwartz. Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium. . Langmuir 2001. 17: p. 5736-5738.
65.Schwartz, Jeffrey, Avaltroni, Michael J., Danahy, Michael P., Silverman, Brett M., Hanson, Eric L., Schwarzbauer, Jean E., Midwood, Kim S., Gawalt, Ellen S. Cell attachment and spreading on metal implant materials. Materials Science and Engineering: C, 2003. 23(3): p. 395-400.
66.Stephen Marcinko, Alexander Y. Fadeev. Hydrolytic Stability of Organic Monolayers Supported on TiO2 and ZrO2. Langmuir 2004. 20: p. 2270-2273.
67.Brett M. Silverman, Kristen A. Wieghaus, Jeffrey Schwartz. Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir 2005. 21: p. 225-228.
68.Gang Lu, Steven L. Bernasek, Jeffrey Schwartz. Oxidation of a polycrystalline titanium surface by oxygen and water. Surface Science, 2000. 458: p. 80-90.
69.V. Zoulalian, S. Monge, S. Zu1rcher, M. Textor, J. J. Robin, S. Tosatti. Functionalization of Titanium Oxide Surfaces by Means of Poly(alkyl-phosphonates). Journal of Physical Chemistry B, 2006. 110: p. 25603-25605.
70.Goldberg, S., Sposito, G. A Chemical-Model of Phosphate Adsorption by Soils .1. Reference Oxide Minerals. Soil Science Society of America Journal, 1984. 48(4): p. 772-778.
71.G. Guerrero, P. H. Mutin, A. Vioux. Anchoring of Phosphonate and Phosphinate Coupling Molecules on Titania Particles. Chemistry of Materials, 2001. 13: p. 4367-4373.
72.Stumm, W. The Inner-Sphere Surface Complex - a Key to Understanding Surface Reactivity. Aquatic Chemistry, 1995. 244: p. 1-32.
73.Muljadi, D., Posner, A. M., Quirk, J. P. Mechanism of Phosphate Adsorption by Kaolinite Gibbsite and Pseudoboehmite .3. Effect of Temperature on Adsorption. Journal of Soil Science, 1966. 17(2): p. 238-&.
74.Rajan, S.S.S. Adsorption of Divalent Phosphate on Hydrous Aluminum-Oxide. Nature, 1975. 253(5491): p. 434-436.
75.N. Stevens, C. I. Priest, R. Sedev, J. Ralston. Wettability of Photoresponsive Titanium Dioxide Surfaces. Langmuir 2003. 19: p. 3272-3275.
76.Minko, S. Polymer Surfaces and Interfaces First ed. 2008: Spinger.
77.Chuang, W. H., Lin, J. C. Surface characterization and platelet adhesion studies for the mixed self-assembled monolayers with amine and carboxylic acid terminated functionalities. Journal of Biomedical Materials Research Part A, 2007. 82A(4): p. 820-830.
78.Shen, C. H., Lin, J. C. Platelet Compatibility Improvement by Proper Choice of Acidic Terminal Functionality for Mixed-Charge Self-Assembled Monolayers. Langmuir 2012. 28(1): p. 640-647.
79.Qin, X. S., Li, Y. C., Zhou, F., Ren, L. X., Zhao, Y. H., Yuan, X. Y. Polydimethylsiloxane-polymethacrylate block copolymers tethering quaternary ammonium salt groups for antimicrobial coating. Applied Surface Science, 2015. 328: p. 183-192.
80.Degatica, N. L. H., Jones, G. L., Gardella, J. A. Surface Characterization of Titanium-Alloys Sterilized for Biomedical Applications. Applied Surface Science, 1993. 68(1): p. 107-121.
81.Kilpadi, D. V., Lemons, J. E., Liu, J., Raikar, G. N., Weimer, J. J., Vohra, Y. Cleaning and heat-treatment effects on unalloyed titanium implant surfaces. International Journal of Oral & Maxillofacial Implants, 2000. 15(2): p. 219-230.
82.Kakavandi, R., Savu, S. A., Caneschi, A., Chasse, T., Casu, M. B. At the interface between organic radicals and TiO2(110) single crystals: electronic structure and paramagnetic character. Chemical Communications, 2013. 49(86): p. 10103-10105.
83.Kerber, S. J., Bruckner, J. J., Wozniak, K., Seal, S., Hardcastle, S., Barr, T. L. The nature of hydrogen in x-ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1996. 14(3): p. 1314-1320.
84.Reinholdt, M., Ilie, A., Roualdès, S., Frugier, J., Schieda, M., Coutanceau, C., Martemianov, S., Flaud, V., Beche, E., Durand, J. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells. Membranes, 2012. 4: p. 529-552.
85.Suh, T. S., Joo, C. K., Kim, Y. C., Lee, M. S., Lee, H. K., Choe, B. Y., Chun, H. J. Surface modification of polymethyl methacrylate intraocular lenses with the mixture of acrylic acid and acrylamide via plasma-induced graft copolymerization. Journal of Applied Polymer Science, 2002. 85(11): p. 2361-2366.
86.Erdem, B., Hunsicker, R. A., Simmons, G. W., Sudol, E. D., Dimonie, V. L., El-Aasser, M. S. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 2001. 17(9): p. 2664-2669.
87.Schuetzle, D., Carter, R. O., Shyu, J., Dickie, R. A., Holubka, J., Mcintyre, N. S. The Chemical Interaction of Organic Materials with Metal Substrates .1. Esca Studies of Organic Phosphate Films on Steel. Applied Spectroscopy, 1986. 40(5): p. 641-649.
88.Faxalv, L., Ekblad, T., Liedberg, B., Lindahl, T. L. Blood compatibility of photografted hydrogel coatings. Acta Biomaterialia, 2010. 6(7): p. 2599-2608.
89.Kulik, E., Ikada, Y. In vitro platelet adhesion to nonionic and ionic hydrogels with different water contents. Journal of Biomedical Materials Research, 1996. 30(3): p. 295-304.
90.Keith R. Milner, Alan J. Snyder, Christopher A. Siedlecki. Sub-micron texturing for reducing platelet adhesion to polyurethane biomaterials. Journal of Biomedical Materials Research Part A, 2006. 76A(3): p. 561-570
校內:2020-08-13公開