| 研究生: |
許家榮 Syu, Jia-Rong |
|---|---|
| 論文名稱: |
氧化鋅表面修飾作為電子注入層於反轉式高分子發光二極體 Surface Modification of Zinc Oxide as Electron Injection Layer in Inverted Polymer Light Emitting Diode |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 氧化鋅 、電子注入 、高分子發光二極體 |
| 外文關鍵詞: | ZnO, electron injection, PLED |
| 相關次數: | 點閱:58 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主題包含兩大部分,第一部分利用氧化鋅退火處理造成的物性改變,使得自我組裝單分子層修飾效果的改變;第二部份利用四級胺鹽作為氧化鋅表面修飾,探討其應用在反轉式高分子發光二極體電子注入的影響。兩部分內容詳述如下:
在第一部分中,藉由控制氧化鋅退火溫度,改變氧化鋅結晶型態與表面結構,發現氧化鋅會因退火溫度上升而使結晶強度增加,同時也增加本身的電子遷移率,然而退火溫度上升時,使得氧化鋅表面氫氧基減少,導致鍵結的自我組裝單分子層減少而降低偶極強度,故退火溫度有一最佳值,能夠提升電子遷移率卻不降低偶極強度。
在第二部份中,利用四級胺鹽作為氧化鋅的表面修飾,與未經修飾的氧化鋅相比,元件效能有大幅度增進,表示電子注入能力有提升的現象。藉由UPS分析證實四級胺鹽確實能降低電子注入能障,並利用單一載子元件探討四級胺鹽鏈長對電子注入能力改變。
In this thesis, we suggest two methods for modifying energy levels of zinc oxide (ZnO) conduction band as the electron injection layers in inverted polymer light emitting diode (PLED). First of all, self-assemble monolayer (SAM) is grafted onto ZnO substrate to reduce the barrier between emissive layer (EL) and ZnO. In the next, we use the quaternary ammonium salts (quats) to modify the surface of zinc oxide to improve electron injection ability. The following is the detail of two parts:
In the first part, SAM is successfully grafted the surface of ZnO using hydrolysis to reduce the electron injection barrier. Besides, the effect of ZnO crystallinity using annealing process on electron injection ability is further studied. When increasing annealing temperature of zinc oxide, the intensity of crystallinity as well as grain size increases, which results in enhancement of electron mobility. On the contrary, the decrease of hydroxide groups on ZnO surface inhibits SAM formation, which obstructs the establishment of dipole moment. The optimization of annealing temperature can be debated by considering both effects.
In the secondary section, the ZnO substrates are modified by various quats and further assembled in inverted PLED. The device performance shows a dramatic enhancement after quats modification. By UPS analysis and Fowler-Nordheim model calculation, electron injection barrier between EL and ZnO is indeed decreased. Besides, the effect of length of alkyl chain on electron injection ability is studied.
1.M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2024 (1963).
2.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
3.R. H. Partridgea, Polymer, 24, 755 (1983).
4.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Mark, K. Mackay, R. N. Friend, P. L. Burn and A. B. Holmes, Nature, 347, 539 (1990).
5.D. Braun and A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
6.A. J. Heeger and D. Braun (UNIAX), WO-B 92/16023 (1992).
7.K. Ziemelis, Nature, 399, 408, (1999).
8.http://www.oled-info.com/
9.http://163.23.210.150/oled/index.htm
10.G. Grem, G. Leditzky, B. Ullrich,and G. Leising, Adv. Mater., 4, 36 (1992).
11.M. Hamguchi, H. Sawada, J. Kyokane and K. Yoshino, Chem. Lett., 25, 527 (1996).
12.S. Gaherith, H. G. Nothoper, U. Scherp and E. J. W. List, Jpn. J. Appl. Phys., 43, L891 (2004).
13.Y. H. Yao, L. R. Kung and C. S. Hsu, Jpn. J. Appl. Phys., 44, 7648 (2005).
14.S. A. VanSlyke, A. Pignate, D. Freeman, N. Redden, D. Waters, H. Kikuchi, T.Negishi, H. Kanno, Y. Nishio, M. Nakai, Proceeding of SID’02, p. 886, June 19-24, 2002, Boston, USA.
15.C. C. Wu. C. I. Sturm. and A. Kahn, Appl. Phys. Lett., 70, 1348 (1997).
16.J. S. Kim, M. GranstrÖm. R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
17.S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A, 68, 447 (1999).
18.H. You, Y. Dai, Z. Zhang, and D. Ma, J. Appl. Phys., 101, 026105 (2007).
19.C.H. Cheung, W.J. Song, and S.K. So, Org. Electron, 11, 89, (2010).
20.T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Appl. Phys. Lett., 75, 1679 (1999).
21.I. M. Chan, T. Y. Hsu, and F. C. Hong, Appl. Phys. Lett., 81, 1899 (2002).
22.D. D. Zhang, J. Feng, Y. F. Liu, Y. Q. Zhong, Y. Bai, Y. Jin, G. H. Xie, Q. Xue, Y. Zhao, S. Y. Liu, and H. B. Sun, 94, Appl. Phys. Lett., 223306 (2009).
23.K. Morii, T. Kawase, and S. Inoue, Appl. Phys. Lett., 92, 213304 (2008).
24.T. Xiong, F. Wang, X. Qiao, and D. Ma, Appl. Phys. Lett., 92, 263305 (2008).
25.K. Moriia, M. Ishida, T. Takashima, T. Shimoda, Q. Wang, M. K. Nazeeruddin, and M. Grätzel, Appl. Phys. Lett. , 89, 183510 (2006).
26.S. A. Haque, S. Koops, N. Tokmoldin, J. R. Durrant, J. Huang, D. D. C. Bradley, and E. Palomares, Adv. Mater., 19, 683 (2007).
27.H. J. Bolink, E. Baranoff, M. C. Leon, E. Coronado, D. Repetto, M. Sessolo,and M. K. Nazeeruddin, Langmuir, 25, 79 (2009).
28.H. J. Bolink, E. Coronado, D. Repetto, and M. Sessolo, Appl. Phys. Lett., 91, 223501 (2007).
29.D. Kabra, M. H. Song, B. Wenger, R. H. Friend, and H. J. Snaith, Adv. Mater., 20, 3447 (2008).
30.H. J. Bolink, E. Coronado, and M. Sessolo, Chem. Mater., 21, 439 (2009).
31.H. J. Bolink, E. Coronado, J. Orozco, and M. Sessolo, Adv. Mater., 21, 79 (2009).
32.N. Tokmoldin, N. Griffiths, D. D. C. Bradley, and S. A. Haque, Adv. Mater., 21, 3475 (2009).
33.T. Shirakawa, T. Umeda, Y. Hashimoto, A. Fujii and K. Yoshino, J. Phys. D: Appl. Phys., 37, 847 (2004).
34.M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett., 89, 143517 (2006).
35.S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O’Malley, and A. K. Y. Jen, Appl. Phys. Lett., 92, 253301 (2008).
36.S. K. Hau, H. L. Yip, H. Ma, and A. K. Y. Jen, Appl. Phys. Lett., 93, 233304 (2008).
37.H. J. Bolink, H. Brine, E. Coronado, and M. Sessolo, Adv. Mater., 22, 2198 (2010).
38.M. C. Hung, K. Y. Wu, Y. T. Tao, and H. W. Huang, Appl. Phys. Lett., 89, 203103 (2006).
39.E. A. Bazzaoui, M. Bazzaoui, J. Aubard, J. S. Lomas, N. Felidj, G. Levi, Synth. Metals., 123, 299 (2001).
40.K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Laua, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, Appl. Phys. Lett., 80, 2788 (2002).
41.V. Bliznyuk, B. Ruhstaller, P. J. Brock, U. Scherf, and S. A. Carter, Adv. Mater.,11, 1257 (1999).
42.C. Goh, S. R. Scully, and M. D. McGehee, J. Appl. Phys., 101, 114503 (2007).
43.A. Ulman, Chem. Rev., 96, 1533 (1996).
44.S. Khodabakhsh, D. Poplavskyy, and S. Heutz, J. Nelson, D. D. C. Bradley, H. Murata, T. S. Jones, Adv. Funct. Mater., 14, 1205 (2004).
45.H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, Adv. Mater., 20, 2376 (2008).
46.B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, and P. W. M. Blom, Adv. Mater., 17, 621 (2005).
47.B. de Boer, A. Hadipour, R. Foekema, T. van Woudenbergh, M. M. Mandoc, V. D. Mihailetchi, and P. W. M. Blom, Proc. SPIE, 5464, 18 (2004).
48.J. Huang, G. Li, and Y. Yang, Adv. Mater., 20, 418 (2008).
49.Y. Xu, R. Yang, J. Peng, A. A. Mikhailovsky, Y. Cao, T. Q. Nguyen, and G. C. Bazan, Adv. Mater., 21, 584 (2009).
50.陳金鑫,有機電激發光材料與元件,(2005).
51.M. Ohyama, H. Kozuka , T. Yoko, Thin Solid Film, 306, 78(1997).
52.J. Petersen, C. Brimont, M. Gallart, O. Crégut, G. Schmerber, P. Gilliot, B. Hönerlage, C. Ulhaq-Bouillet, J. L. Rehspringer, C. Leuvrey, S. Colis, H. Aubriet,C. Becker, D. Ruch, A. Slaoui, and A. Dinia, Appl. Phys. Lett., 104, 113539 (2008).
53.D. Raoufi, T. Raoufi, Appl. Surf. Sci. , 255, 5812 (2009).
54.A. Bashir, P. H. Wo¨bkenberg, J. Smith, J. M. Ball,G. Adamopoulos, D. D. C. Bradley, and T. D. Anthopoulos, Adv. Mater., 21, 2226 (2009).
55.H.J. Bolink, E. Coronado, D. Repetto, M. Sessolo, .M. Barea, J. Bisquert,G. G. Belmonte, J. Prochazka and L. Kavan, Adv. Mater., 18, 145 (2008).
56.N. Bouhssir, S. Abed, E. Tomasella, J. Cellier, A. Mosbah, M.S. Aida, M. Jacquet, Appl. Surf. Sci., 252, 5594 (2006).