| 研究生: |
王立君 Wang, Li-Chun |
|---|---|
| 論文名稱: |
探討TAPE先天免疫調控分子在 RIG-I-like receptor及Toll-like receptor路徑活化之角色與分子機制 Functional and mechanistic study of TAPE innate immune regulator in the RIG-I-like receptor and endosomal Toll-like receptor pathways |
| 指導教授: |
凌斌
Ling, Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | TBK1-associated protein in endolysosomes (TAPE)/CC2D1A 、RIG-I 、MAVS 、泛素化 、TRIM25 、TLR3 、TLR7 、第一型干擾素 |
| 外文關鍵詞: | TBK1-associated protein in endolysosomes (TAPE)/CC2D1A, RIG-I, MAVS, Ubiquitination, TRIM25, TLR3, TLR7, type I IFN |
| 相關次數: | 點閱:184 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
病毒介導的傳染病導致每年嚴重的發病率和死亡率。哺乳動物先天免疫系統逐漸清楚是由多種內體TLR和細胞質病毒感測器組成並偵測病毒核酸,在早期病毒感染時誘發第一型干擾素的抗病毒防禦。TBK1是參與RLRs, TLR3, TLR4以及DNA sensor活化第一型干擾素的重要蛋白激酶。我們先前發現一個先天免疫調控分子稱為TAPE (TBK1-associated protein in endolysosomes),在哺乳類細胞中TAPE是一個位在endolysosomal的銜接蛋白並參與在TLR3, TLR4和RLRs產生第一型干擾素的路徑中。由於這些原因,我們對於利用遺傳學及生物化學方法探討TAPE在調節RLR和內體TLR路徑的角色感到興趣。不同於先前的Tape -/-小鼠胚胎纖維母細胞(MEFs) 仍然具有一段TAPE截斷N端區域,我建立了新的TapeKO/KO確定其TAPE基因完整剃除無法偵測到TAPE蛋白來進行體外實驗。從酵素免疫分析法結果得到在初代小鼠胚胎纖維母細胞中TAPE基因缺失時會減低RLR活化,並且在TAPE基因缺失的骨隨分化之樹突細胞中也看到相同的結果。由於TAPE與RIG-I和MAVS會形成一個複合物,並且TAPE的N端區域會與RIG-I 的CARD區域相互作用。因此,我主要探討TAPE和MAVS分別經由哪些區域去相互作用。由共免疫沉澱實驗指出TAPE的C端會與MAVS的C端區域作用。我評估了TAPE對RIG-I泛素化的影響。由生物化學結果顯示,TAPE基因下調減少了RIG-I的K63多聚合泛素化。另外實驗也顯示TAPE與TRIM25有相互作用並進一步調節TRIM25的K63連鎖多聚合泛素化。此外,先前實驗室研究已知在哺乳類細胞中發現TAPE參與在TLR3的路徑中。我的論文進一步利用基因剔除的實驗方法確定TAPE在內體TLR3和TLR7的路徑當中之角色。體外實驗指出在初代小鼠胚胎纖維母細胞、骨隨分化之樹突細胞和巨噬細胞中TAPE基因缺失時會降低TLR3的活化。反之,漿細胞樣樹突細胞(pDC)中的TAPE基因缺失時在TLR7路徑中沒有顯著地影響。綜合上述,我的論文工作證明了在RIG-I的訊號傳導過程中,TAPE會調控TRIM25和RIG-I的泛素化,並且也可能扮演一個連接RIG-I到MAVS的介質。此外,在初代細胞中TAPE確實在TLR3的訊號傳導路徑扮演一個重要的角色。
Virus-mediated infectious diseases cause the severe morbidity and mortality every year. It becomes clear that the mammalian innate immune system consists of several endosomal TLRs and cytosolic viral sensors, which can detect viral nucleic acids to trigger type I IFN-mediated antiviral defenses at the early viral infection. TBK-1 is an important protein kinase linking RIG-I-like receptors (RLRs), TLR3, TLR4 and DNA sensors to the activation of type I IFNs. Our previous work uncovered an innate immune regulator called TAPE (TBK1-associated protein in endolysosomes), which is an endolysosomal adaptor involved in linking the TLR3, TLR4 and RLRs signaling pathways to type I IFN production in mammalian cells. Given these facts, we were interested in further understanding how TAPE regulates the RIG-I-like receptor (RLR) pathway and endosomal TLR pathways by genetic and biochemical approaches. Distinct from a Tape -/- mouse embryonic fibroblast (MEF) line which still encodes a truncated N-terminal region of TAPE, a new TapeKO/KO MEF line, which has no detectable TAPE protein, has been generated for ex vivo experiments. Results from ELISA analyses showed that TAPE deficiency impaired RLR activation in primary MEFs. Similarly, TAPE-deficienct bone marrow derived dendritic cells (BMDCs) were impaired in RLR signaling. Given the facts that TAPE forms a complex with RIG-I and MAVS and the N terminal domain of TAPE interacts with the RIG-I CARD domains, I thus focused on mapping the interaction domains between TAPE and MAVS. Co-immunoprecipitation experiments indicated that the C terminal domain of TAPE interacted with the C terminal region of MAVS. It is known that RIG-I activation and signaling is regulated by ubiquitination and oligomerization of RIG-I. I thus assessed the effect of TAPE on the ubiquitination of RIG-I. Biochemical results revealed that TAPE knockdown reduced K63-linked polyubiquitination of RIG-I. Moreover, TAPE was shown to interact with TRIM25 and regulate the K63-linked polyubiquitination of TRIM25. In addition, previous work from our lab demonstrated that TAPE is involved in the TLR3 pathway in a mammalian cell line. My thesis work further used the genetic knockout approach to assess the role of TAPE in the endosomal TLR3 and TLR7 pathways. Ex vivo studies showed that TAPE deficiency impaired TLR3 signaling in MEFs, BMDCs and bone marrow derived macrophages (BMDMs). In contrast, TAPE deficiency in plasmacytoid dendritic cells (pDCs) showed no obvious defect in the TLR7 pathway. Together, my work suggests that during RIG-I signaling, TAPE functions to regulate the ubiquitination of TRIM25 and RIG-I, and also may bridge RIG-I to MAVS. Also, TAPE is required for in the TLR3 pathways in primary cells.
1. Takeuchi, O., and Akira, S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805-820
2. Janeway, C. A., Jr. (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor symposia on quantitative biology 54 Pt 1, 1-13
3. Kawai, T., and Akira, S. (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. International immunology 21, 317-337
4. Wu, J., Sun, L., Chen, X., Du, F., Shi, H., Chen, C., and Chen, Z. J. (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826-830
5. Barton, G. M., and Kagan, J. C. (2009) A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature reviews. Immunology 9, 535-542
6. Seth, R. B., Sun, L., and Chen, Z. J. (2006) Antiviral innate immunity pathways. Cell research 16, 141-147
7. Vabret, N., and Blander, J. M. (2013) Sensing microbial RNA in the cytosol. Frontiers in immunology 4, 468
8. Diamond, M. S., and Farzan, M. (2013) The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nature reviews. Immunology 13, 46-57
9. Wheeler, T. T., and Hood, K. A. (2005) The mammalian innate immune system: potential targets for drug development. Current drug targets. Immune, endocrine and metabolic disorders 5, 237-247
10. Akira, S., Uematsu, S., and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124, 783-801
11. Kumar, H., Kawai, T., and Akira, S. (2011) Pathogen recognition by the innate immune system. International reviews of immunology 30, 16-34
12. Pichlmair, A., and Reis e Sousa, C. (2007) Innate recognition of viruses. Immunity 27, 370-383
13. Chow, J., Franz, K. M., and Kagan, J. C. (2015) PRRs are watching you: Localization of innate sensing and signaling regulators. Virology 479-480, 104-109
14. Jiang, D., Weidner, J. M., Qing, M., Pan, X. B., Guo, H., Xu, C., Zhang, X., Birk, A., Chang, J., Shi, P. Y., Block, T. M., and Guo, J. T. (2010) Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections. Journal of virology 84, 8332-8341
15. Schoggins, J. W., and Rice, C. M. (2011) Interferon-stimulated genes and their antiviral effector functions. Current opinion in virology 1, 519-525
16. Lu, J., Pan, Q., Rong, L., He, W., Liu, S. L., and Liang, C. (2011) The IFITM proteins inhibit HIV-1 infection. Journal of virology 85, 2126-2137
17. Wilkins, C., Woodward, J., Lau, D. T., Barnes, A., Joyce, M., McFarlane, N., McKeating, J. A., Tyrrell, D. L., and Gale, M., Jr. (2013) IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology 57, 461-469
18. Goujon, C., Moncorge, O., Bauby, H., Doyle, T., Ward, C. C., Schaller, T., Hue, S., Barclay, W. S., Schulz, R., and Malim, M. H. (2013) Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502, 559-562
19. Yan, N., and Chen, Z. J. (2012) Intrinsic antiviral immunity. Nature immunology 13, 214-222
20. Duggal, N. K., and Emerman, M. (2012) Evolutionary conflicts between viruses and restriction factors shape immunity. Nature reviews. Immunology 12, 687-695
21. Goubau, D., Deddouche, S., and Reis e Sousa, C. (2013) Cytosolic sensing of viruses. Immunity 38, 855-869
22. Kawai, T., and Akira, S. (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650
23. Hertz, C. J., Kiertscher, S. M., Godowski, P. J., Bouis, D. A., Norgard, M. V., Roth, M. D., and Modlin, R. L. (2001) Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2. Journal of immunology 166, 2444-2450
24. Chan, Y. K., and Gack, M. U. (2015) RIG-I-like receptor regulation in virus infection and immunity. Current opinion in virology 12, 7-14
25. Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T. S., Fujita, T., and Akira, S. (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. The Journal of experimental medicine 205, 1601-1610
26. Kawai, T., and Akira, S. (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature immunology 11, 373-384
27. Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B. W., Ziebuhr, J., Szretter, K. J., Baker, S. C., Barchet, W., Diamond, M. S., Siddell, S. G., Ludewig, B., and Thiel, V. (2011) Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature immunology 12, 137-143
28. Bruns, A. M., and Horvath, C. M. (2012) Activation of RIG-I-like receptor signal transduction. Critical reviews in biochemistry and molecular biology 47, 194-206
29. Loo, Y. M., and Gale, M., Jr. (2011) Immune signaling by RIG-I-like receptors. Immunity 34, 680-692
30. Bruns, A. M., Pollpeter, D., Hadizadeh, N., Myong, S., Marko, J. F., and Horvath, C. M. (2013) ATP hydrolysis enhances RNA recognition and antiviral signal transduction by the innate immune sensor, laboratory of genetics and physiology 2 (LGP2). The Journal of biological chemistry 288, 938-946
31. Bruns, A. M., Leser, G. P., Lamb, R. A., and Horvath, C. M. (2014) The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly. Molecular cell 55, 771-781
32. Childs, K. S., Randall, R. E., and Goodbourn, S. (2013) LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA. PloS one 8, e64202
33. Komuro, A., and Horvath, C. M. (2006) RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. Journal of virology 80, 12332-12342
34. Rothenfusser, S., Goutagny, N., DiPerna, G., Gong, M., Monks, B. G., Schoenemeyer, A., Yamamoto, M., Akira, S., and Fitzgerald, K. A. (2005) The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. Journal of immunology 175, 5260-5268
35. Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K., Schlee, M., Endres, S., and Hartmann, G. (2006) 5'-Triphosphate RNA is the ligand for RIG-I. Science 314, 994-997
36. Seth, R. B., Sun, L., Ea, C. K., and Chen, Z. J. (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669-682
37. Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K. J., Takeuchi, O., and Akira, S. (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature immunology 6, 981-988
38. Xu, L. G., Wang, Y. Y., Han, K. J., Li, L. Y., Zhai, Z., and Shu, H. B. (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular cell 19, 727-740
39. Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167-1172
40. Weber, M., Sediri, H., Felgenhauer, U., Binzen, I., Banfer, S., Jacob, R., Brunotte, L., Garcia-Sastre, A., Schmid-Burgk, J. L., Schmidt, T., Hornung, V., Kochs, G., Schwemmle, M., Klenk, H. D., and Weber, F. (2015) Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell host & microbe 17, 309-319
41. Sato, S., Li, K., Kameyama, T., Hayashi, T., Ishida, Y., Murakami, S., Watanabe, T., Iijima, S., Sakurai, Y., Watashi, K., Tsutsumi, S., Sato, Y., Akita, H., Wakita, T., Rice, C. M., Harashima, H., Kohara, M., Tanaka, Y., and Takaoka, A. (2015) The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 42, 123-132
42. Heguy, A., Baldari, C. T., Macchia, G., Telford, J. L., and Melli, M. (1992) Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila toll protein are essential for IL-1R signal transduction. The Journal of biological chemistry 267, 2605-2609
43. Botos, I., Segal, D. M., and Davies, D. R. (2011) The structural biology of Toll-like receptors. Structure 19, 447-459
44. Akira, S. (2006) TLR signaling. Current topics in microbiology and immunology 311, 1-16
45. Lester, S. N., and Li, K. (2014) Toll-like receptors in antiviral innate immunity. Journal of molecular biology 426, 1246-1264
46. Bell, J. K., Mullen, G. E., Leifer, C. A., Mazzoni, A., Davies, D. R., and Segal, D. M. (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends in immunology 24, 528-533
47. Gay, N. J., and Gangloff, M. (2007) Structure and function of Toll receptors and their ligands. Annual review of biochemistry 76, 141-165
48. Xagorari, A., and Chlichlia, K. (2008) Toll-like receptors and viruses: induction of innate antiviral immune responses. The open microbiology journal 2, 49-59
49. Gurtler, C., and Bowie, A. G. (2013) Innate immune detection of microbial nucleic acids. Trends in microbiology 21, 413-420
50. Zhang, S. Y., Jouanguy, E., Ugolini, S., Smahi, A., Elain, G., Romero, P., Segal, D., Sancho-Shimizu, V., Lorenzo, L., Puel, A., Picard, C., Chapgier, A., Plancoulaine, S., Titeux, M., Cognet, C., von Bernuth, H., Ku, C. L., Casrouge, A., Zhang, X. X., Barreiro, L., Leonard, J., Hamilton, C., Lebon, P., Heron, B., Vallee, L., Quintana-Murci, L., Hovnanian, A., Rozenberg, F., Vivier, E., Geissmann, F., Tardieu, M., Abel, L., and Casanova, J. L. (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522-1527
51. Kim, Y. M., Brinkmann, M. M., Paquet, M. E., and Ploegh, H. L. (2008) UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452, 234-238
52. Gonzalez-Granado, L. I. (2011) Is it time to study TLR3 or UNC-93B pathway deficiencies in reactivated herpes simplex encephalitis? The Pediatric infectious disease journal 30, 90
53. Suazo, P. A., Ibanez, F. J., Retamal-Diaz, A. R., Paz-Fiblas, M. V., Bueno, S. M., Kalergis, A. M., and Gonzalez, P. A. (2015) Evasion of early antiviral responses by herpes simplex viruses. Mediators of inflammation 2015, 593757
54. Le Goffic, R., Balloy, V., Lagranderie, M., Alexopoulou, L., Escriou, N., Flavell, R., Chignard, M., and Si-Tahar, M. (2006) Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS pathogens 2, e53
55. Gilliet, M., Cao, W., and Liu, Y. J. (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature reviews. Immunology 8, 594-606
56. Asselin-Paturel, C., Brizard, G., Chemin, K., Boonstra, A., O'Garra, A., Vicari, A., and Trinchieri, G. (2005) Type I interferon dependence of plasmacytoid dendritic cell activation and migration. The Journal of experimental medicine 201, 1157-1167
57. Swiecki, M., and Colonna, M. (2010) Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunological reviews 234, 142-162
58. Lund, J. M., Alexopoulou, L., Sato, A., Karow, M., Adams, N. C., Gale, N. W., Iwasaki, A., and Flavell, R. A. (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proceedings of the National Academy of Sciences of the United States of America 101, 5598-5603
59. Barber, G. N. (2011) Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Current opinion in immunology 23, 10-20
60. Ishii, K. J., Coban, C., Kato, H., Takahashi, K., Torii, Y., Takeshita, F., Ludwig, H., Sutter, G., Suzuki, K., Hemmi, H., Sato, S., Yamamoto, M., Uematsu, S., Kawai, T., Takeuchi, O., and Akira, S. (2006) A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nature immunology 7, 40-48
61. Stetson, D. B., and Medzhitov, R. (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93-103
62. Zhong, B., Yang, Y., Li, S., Wang, Y. Y., Li, Y., Diao, F., Lei, C., He, X., Zhang, L., Tien, P., and Shu, H. B. (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538-550
63. Ishikawa, H., and Barber, G. N. (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674-678
64. Sun, L., Wu, J., Du, F., Chen, X., and Chen, Z. J. (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786-791
65. Chen, Q., Sun, L., and Chen, Z. J. (2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nature immunology 17, 1142-1149
66. Sunthamala, N., Thierry, F., Teissier, S., Pientong, C., Kongyingyoes, B., Tangsiriwatthana, T., Sangkomkamhang, U., and Ekalaksananan, T. (2014) E2 proteins of high risk human papillomaviruses down-modulate STING and IFN-kappa transcription in keratinocytes. PloS one 9, e91473
67. Lau, L., Gray, E. E., Brunette, R. L., and Stetson, D. B. (2015) DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350, 568-571
68. Lam, E., Stein, S., and Falck-Pedersen, E. (2014) Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. Journal of virology 88, 974-981
69. Gao, D., Wu, J., Wu, Y. T., Du, F., Aroh, C., Yan, N., Sun, L., and Chen, Z. J. (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903-906
70. Ishikawa, H., Ma, Z., and Barber, G. N. (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788-792
71. Jiang, X., Kinch, L. N., Brautigam, C. A., Chen, X., Du, F., Grishin, N. V., and Chen, Z. J. (2012) Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36, 959-973
72. Myong, S., Cui, S., Cornish, P. V., Kirchhofer, A., Gack, M. U., Jung, J. U., Hopfner, K. P., and Ha, T. (2009) Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA. Science 323, 1070-1074
73. Gack, M. U., Shin, Y. C., Joo, C. H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., and Jung, J. U. (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920
74. Oshiumi, H., Miyashita, M., Inoue, N., Okabe, M., Matsumoto, M., and Seya, T. (2010) The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell host & microbe 8, 496-509
75. Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., and Chen, Z. J. (2010) Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315-330
76. Inn, K. S., Gack, M. U., Tokunaga, F., Shi, M., Wong, L. Y., Iwai, K., and Jung, J. U. (2011) Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Molecular cell 41, 354-365
77. Gack, M. U., Kirchhofer, A., Shin, Y. C., Inn, K. S., Liang, C., Cui, S., Myong, S., Ha, T., Hopfner, K. P., and Jung, J. U. (2008) Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proceedings of the National Academy of Sciences of the United States of America 105, 16743-16748
78. Sanchez, J. G., Chiang, J. J., Sparrer, K. M., Alam, S. L., Chi, M., Roganowicz, M. D., Sankaran, B., Gack, M. U., and Pornillos, O. (2016) Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway. Cell reports 16, 1315-1325
79. Koliopoulos, M. G., Esposito, D., Christodoulou, E., Taylor, I. A., and Rittinger, K. (2016) Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. The EMBO journal 35, 1204-1218
80. Ikeda, K., and Inoue, S. (2012) TRIM proteins as RING finger E3 ubiquitin ligases. Advances in experimental medicine and biology 770, 27-37
81. Li, X., Li, Y., Stremlau, M., Yuan, W., Song, B., Perron, M., and Sodroski, J. (2006) Functional replacement of the RING, B-box 2, and coiled-coil domains of tripartite motif 5alpha (TRIM5alpha) by heterologous TRIM domains. Journal of virology 80, 6198-6206
82. Ozato, K., Shin, D. M., Chang, T. H., and Morse, H. C., 3rd. (2008) TRIM family proteins and their emerging roles in innate immunity. Nature reviews. Immunology 8, 849-860
83. Lee, N. R., Kim, H. I., Choi, M. S., Yi, C. M., and Inn, K. S. (2015) Regulation of MDA5-MAVS Antiviral Signaling Axis by TRIM25 through TRAF6-Mediated NF-kappaB Activation. Molecules and cells 38, 759-764
84. Hodge, C. D., Spyracopoulos, L., and Glover, J. N. (2016) Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 7, 64471-64504
85. Sanchez-Aparicio, M. T., Ayllon, J., Leo-Macias, A., Wolff, T., and Garcia-Sastre, A. (2017) Subcellular Localizations of RIG-I, TRIM25, and MAVS Complexes. Journal of virology 91
86. Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q. X., and Chen, Z. J. (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448-461
87. Peisley, A., Wu, B., Xu, H., Chen, Z. J., and Hur, S. (2014) Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509, 110-114
88. Potter, J. A., Randall, R. E., and Taylor, G. L. (2008) Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain. BMC structural biology 8, 11
89. Onoguchi, K., Onomoto, K., Takamatsu, S., Jogi, M., Takemura, A., Morimoto, S., Julkunen, I., Namiki, H., Yoneyama, M., and Fujita, T. (2010) Virus-infection or 5'ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1. PLoS pathogens 6, e1001012
90. Sun, Q., Sun, L., Liu, H. H., Chen, X., Seth, R. B., Forman, J., and Chen, Z. J. (2006) The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24, 633-642
91. Trinchieri, G. (2010) Type I interferon: friend or foe? The Journal of experimental medicine 207, 2053-2063
92. Basel-Vanagaite, L., Attia, R., Yahav, M., Ferland, R. J., Anteki, L., Walsh, C. A., Olender, T., Straussberg, R., Magal, N., Taub, E., Drasinover, V., Alkelai, A., Bercovich, D., Rechavi, G., Simon, A. J., and Shohat, M. (2006) The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. Journal of medical genetics 43, 203-210
93. Rogaeva, A., Galaraga, K., and Albert, P. R. (2007) The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. Journal of neuroscience research 85, 2833-2838
94. Nakamura, A., Naito, M., Tsuruo, T., and Fujita, N. (2008) Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Molecular and cellular biology 28, 5996-6009
95. Chang, C. H., Lai, L. C., Cheng, H. C., Chen, K. R., Syue, Y. Z., Lu, H. C., Lin, W. Y., Chen, S. H., Huang, H. S., Shiau, A. L., Lei, H. Y., Qin, J., and Ling, P. (2011) TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. The Journal of biological chemistry 286, 7043-7051
96. Burkhard, P., Stetefeld, J., and Strelkov, S. V. (2001) Coiled coils: a highly versatile protein folding motif. Trends in cell biology 11, 82-88
97. Lemmon, M. A. (2008) Membrane recognition by phospholipid-binding domains. Nature reviews. Molecular cell biology 9, 99-111
98. Ou, X. M., Lemonde, S., Jafar-Nejad, H., Bown, C. D., Goto, A., Rogaeva, A., and Albert, P. R. (2003) Freud-1: A neuronal calcium-regulated repressor of the 5-HT1A receptor gene. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 7415-7425
99. Rogaeva, A., and Albert, P. R. (2007) The mental retardation gene CC2D1A/Freud-1 encodes a long isoform that binds conserved DNA elements to repress gene transcription. The European journal of neuroscience 26, 965-974
100. Usami, Y., Popov, S., Weiss, E. R., Vriesema-Magnuson, C., Calistri, A., and Gottlinger, H. G. (2012) Regulation of CHMP4/ESCRT-III function in human immunodeficiency virus type 1 budding by CC2D1A. Journal of virology 86, 3746-3756
101. Jaekel, R., and Klein, T. (2006) The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Developmental cell 11, 655-669
102. Drusenheimer, N., Migdal, B., Jackel, S., Tveriakhina, L., Scheider, K., Schulz, K., Groper, J., Kohrer, K., and Klein, T. (2015) The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling. PLoS genetics 11, e1005749
103. Zhao, M., Li, X. D., and Chen, Z. (2010) CC2D1A, a DM14 and C2 domain protein, activates NF-kappaB through the canonical pathway. The Journal of biological chemistry 285, 24372-24380
104. Matsuda, A., Suzuki, Y., Honda, G., Muramatsu, S., Matsuzaki, O., Nagano, Y., Doi, T., Shimotohno, K., Harada, T., Nishida, E., Hayashi, H., and Sugano, S. (2003) Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22, 3307-3318
105. Manzini, M. C., Xiong, L., Shaheen, R., Tambunan, D. E., Di Costanzo, S., Mitisalis, V., Tischfield, D. J., Cinquino, A., Ghaziuddin, M., Christian, M., Jiang, Q., Laurent, S., Nanjiani, Z. A., Rasheed, S., Hill, R. S., Lizarraga, S. B., Gleason, D., Sabbagh, D., Salih, M. A., Alkuraya, F. S., and Walsh, C. A. (2014) CC2D1A regulates human intellectual and social function as well as NF-kappaB signaling homeostasis. Cell reports 8, 647-655
106. Chen, K. R., Chang, C. H., Huang, C. Y., Lin, C. Y., Lin, W. Y., Lo, Y. C., Yang, C. Y., Hsing, E. W., Chen, L. F., Shih, S. R., Shiau, A. L., Lei, H. Y., Tan, T. H., and Ling, P. (2012) TBK1-associated protein in endolysosomes (TAPE)/CC2D1A is a key regulator linking RIG-I-like receptors to antiviral immunity. The Journal of biological chemistry 287, 32216-32221
107. Zhao, M., Raingo, J., Chen, Z. J., and Kavalali, E. T. (2011) Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses. Journal of neurophysiology 105, 1506-1515
108. Hu, H., and Sun, S. C. (2016) Ubiquitin signaling in immune responses. Cell research 26, 457-483
109. You, F., Sun, H., Zhou, X., Sun, W., Liang, S., Zhai, Z., and Jiang, Z. (2009) PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nature immunology 10, 1300-1308
110. Zhou, X., You, F., Chen, H., and Jiang, Z. (2012) Poly(C)-binding protein 1 (PCBP1) mediates housekeeping degradation of mitochondrial antiviral signaling (MAVS). Cell research 22, 717-727
111. Chen, K. R. (2016) Biochemical and functional study of antiviral innate immunity against RNA virus infection, National Cheng Kung University
112. 羅尹秋. (2012) 探討先天性免疫調控分子TAPE與endolysosomes在RIG-I-like receptor訊息傳遞中的角色, 國立成功大學
113. Kato, H., Sato, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T., Takeda, K., Fujita, T., Takeuchi, O., and Akira, S. (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19-28
114. Colonna, M., Trinchieri, G., and Liu, Y. J. (2004) Plasmacytoid dendritic cells in immunity. Nature immunology 5, 1219-1226
115. Swiecki, M., and Colonna, M. (2015) The multifaceted biology of plasmacytoid dendritic cells. Nature reviews. Immunology 15, 471-485
116. Koyama, S., Ishii, K. J., Kumar, H., Tanimoto, T., Coban, C., Uematsu, S., Kawai, T., and Akira, S. (2007) Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. Journal of immunology 179, 4711-4720
117. Pang, I. K., Pillai, P. S., and Iwasaki, A. (2013) Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I. Proceedings of the National Academy of Sciences of the United States of America 110, 13910-13915
118. Wang, J. P., Liu, P., Latz, E., Golenbock, D. T., Finberg, R. W., and Libraty, D. H. (2006) Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. Journal of immunology 177, 7114-7121
119. Akira, S., and Takeda, K. (2004) Toll-like receptor signalling. Nature reviews. Immunology 4, 499-511
120. Lee, B. L., and Barton, G. M. (2014) Trafficking of endosomal Toll-like receptors. Trends in cell biology 24, 360-369
121. Brown, V., Brown, R. A., Ozinsky, A., Hesselberth, J. R., and Fields, S. (2006) Binding specificity of Toll-like receptor cytoplasmic domains. European journal of immunology 36, 742-753
122. Ulrichts, P., Peelman, F., Beyaert, R., and Tavernier, J. (2007) MAPPIT analysis of TLR adaptor complexes. FEBS letters 581, 629-636
123. Kagan, J. C., and Medzhitov, R. (2006) Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943-955
124. Horng, T., Barton, G. M., Flavell, R. A., and Medzhitov, R. (2002) The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329-333
125. Bonham, K. S., Orzalli, M. H., Hayashi, K., Wolf, A. I., Glanemann, C., Weninger, W., Iwasaki, A., Knipe, D. M., and Kagan, J. C. (2014) A promiscuous lipid-binding protein diversifies the subcellular sites of toll-like receptor signal transduction. Cell 156, 705-716