| 研究生: |
蔡旻諺 Tsai, Min-Yen |
|---|---|
| 論文名稱: |
以雷射輔助電漿增強式化學氣相沉積法提升微晶矽化鍺近紅外光檢測器之特性研究 Performance Enhancement of Microcrystalline SiGe Near Infrared Photodetector Deposited by Laser-Assisted Plasma Enhanced Chemical Vapor Deposition |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 近紅外光檢測器 、雷射輔助電漿增強化學氣相沉積系統 、微晶矽鍺薄膜 、光衰退 、傅立葉轉換紅外線光譜 |
| 外文關鍵詞: | Fourier-transform infrared spectrometry, Laser-assisted plasma enhanced chemical vapor deposition, Light-soaking, microcrystalline Silicon-germanium films, Near infrared photodetector |
| 相關次數: | 點閱:101 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由新型雷射輔助電漿增強式化學氣相沉積系統,可在低溫環境下沉積矽化鍺薄膜並製作近紅外光檢測器。由於矽化鍺薄膜的反應氣體矽甲烷與鍺甲烷在二氧化碳雷射(10.6 μm)的波長下擁有高吸收率,在同時受電漿與二氧化碳雷射作用下,使得反應氣體能更容易且有效率地解離為矽與鍺原子。利用低掠角X光繞射移與高解析度穿透式電子顯微鏡量測可發現加入雷射輔助之矽化鍺薄膜有產生明顯地微結晶訊號。經由傅立葉轉換紅外線光譜儀的估算下,雷射輔助矽化鍺薄膜有較低的Si-H與Ge-H鍵結分別為5.72×1021 cm-3與6.06×1020 cm-3。為進一步探討雷射輔助矽化鍺薄膜的功用,因此利用有無雷射輔助的矽化鍺薄膜製作結構為p-Si-i-SiGe-n-Si的近紅外光檢測器作比較,而量測結果加入雷射輔助之矽化鍺薄膜,其光檢測器的量子效率可由無雷射輔助51.7%提升至70.4%。
In this work, the novel laser-assisted plasma enhanced chemical vapor deposition (LAPECVD) system was designed to deposite the silicon-germanium (SiGe) films at low temperature for the near infrared photodetectors. Because the SiH4 and GeH4 reactant gases of the SiGe films have a high absorption coefficient at a wavelength of CO2 laser (10.6 μm), the reactant gases could be easily and efficiently decomposed into Si and Ge atoms by the simultaneous function of the plasma and CO2 laser. Using the Grazing incidence X-ray diffraction (GIXRD) and High-resolution transmission electron microscopy (HRTEM) measurement, there was significantly produced microcrystalline signal with laser-assisted SiGe films. The lower Si-H bonds and Ge-H bonds of the laser-assisted SiGe films were 5.72×1021 cm-3 and 6.06×1020 cm-3, respectively, estimated using the Fourier transform infrared (FTIR) spectrometry. The p-Si-i-SiGe-n-Si near infrared photodetectors, which the i-SiGe film was deposited with and without laser assistance, were fabricated to investigate the function of the laser-assisted SiGe films. The quantum efficiency of 51.7% was improved to 70.4% of the photodetectors with laser-assisted SiGe films.
第一章
[1] R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “Advanced diode
laser absorption sensor system for situ combustion measurement of CO2, H2O, and gas temperature”, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, pp. 95-101 (1998).
[2] J. Gowar, “Optical Communication Systems”, Prentice Hall (1993).
[3] G. Keiser, “Optical Fiber Communications”, McGraw Hill (2000).
[4] G.H. Bauer, F. Voigt, R. Carius, M. Krause, R. Bruggemann, and T. Unold, “Electronic properties of microcrystalline SiGe-thin films by hall-experiments and photo- and dark-transport”, J. Non-Cry. Solids, Vol. 299-302, pp. 153-157 (2002).
[5] M. Boshta, B. Alavi, R. Braunstein, K. Barner, and V.L. Dalal, “Electronic transport properties of the mc-(Si,Ge) alloys prepared by ECR”, Solar Energy Materials & Solar Cells, Vol. 87, pp. 387-393 (2005).
[6] X. Cao, H. S. Povolny. ,and X. Deng, “Hot-wire deposition of hydrogenated nanocrystalline SiGe films for thin-film Si based solar cells”, IEEE, pp.1500-1503 (2005).
[7] T. Matsui, C. W. Chang, T. Takada, M. Isomura, H. Fujiwara, and M.Kondo, “Microcrystalline Si1-xGex solar cells exhibiting enhanced infrared response with reduced absorber thickness”, Applied Physics Express, Vol. 1, pp. 031501-1-031501-3 (2008).
[8] L. K. The, W. K. Choi, L. K. Bera, and W. K. Chim, “Structural characterization of polycrystalline SiGe thin film”, Sol. St. Electronics, Vol. 45, pp. 1936-1966 (2001).
[9] H. Lydtin and R. Wilden, Deposition of Metal: Laser-aided technique, Metals and materials 7 (1973).
[10] J. Mazumder and A. Kar, “Theory and application of laser chemical vapor deposition”, New York:Plenum Press (1995).
[11] I. W. Boyd, “Laser processing of thin films and microstructures”, Berlin Heidelberg,:Springer-Verlag (1987).
[12]D. Bauerle, “Chemical processing with laser”, Berlin
Heidelberg:Springer-Verlag (1986).
第二章
[1] M. Sze, D. J. Coleman, JR., and A. Loya, “Current transport in metal-semiconductor metal (MSM) structures”, Sol. St. Electronics, Vol. 14, pp. 1209 ( 1971).
[2] S. M. Sze, Semiconductor Device Physics and Technology, pp. 278-282 (1985).
[3] H.C.Casey,“Demodulation and photodection techniques”
, Laser Handbook, Vol. 1 , North-Holland, Amsterdam (1972).
第三章
[1] H.C.Casey,“Demodulation and photodection techniques”, Eds.,Laser Handbook, Vol. 1, North-Holland, Amsterdam(1972).
[2] M. Konuma, Film Deposition by Plasma Techniques, Berlin :Springer-Verlag (1992).
[3] F. Jansen, Plasma Deposited Thin Films, edited by J. Mort and F. Jansen,Florida:CRC Press (1985).
[4] 莊達人著, “VLSI製造技術”, 高立圖書出版社, 第146
頁~第234頁,(2000)。
[5] T. F. Deutsch, “Infrared laser photochemistry of silane”, J. Chem. Phys., Vol. 70 , pp. 1187-1192, (1979).
[6] W. B. Steward, and H. H. Nielsen, “The Infrared absorption spectrum of silane”, Phys. Rev., Vol. 47, pp. 828-832, (1935).
[7] W. B. Steward and H. H. Nielsen, “The Infrared absorption spectrum of germane”, Phys. Rev., Vol. 48, pp.861-864, (1935).
第四章
[1] John P, Odeh I M, Thomas M J K, el al. “Determination of the hydrogen content of a-Si films by infrared spectroscopy and 25 MeV α–particle elastic scattering”, J Phys C, Vol. 14, pp. 309-318, (1981).
[2] Ross R C, Tsong I S T, Messier R. “Quantification of hydrogen in a-Si:H films by IR spectrometry”, J Vac. Sci. Technology, Vol. 20, pp.406-409 (1982).
[3] K. M. McNamara, B. E. Williams, K. K. Gleason and B. E. Scruggs, “Identification of defects and impurities in chemical-vapor deposited diamond through infrared”, J. Appl. Phys., Vol. 76, pp. 2466-2472 (1994).
[4] M. Kumru, “A comparison of the optical, IR, electron spin resonance and conductivity properties of a-Ge1-xCx:H with a a-Ge:H and a-Ge thin films prepared by R.F. sputtering”, Thin Solid Films, Vol. 198, pp. 75-84 (1991).
[5] H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Demond, and S. Kalbitzer, “Infrared spectrum and structure of hydrogenated amorphous silicon”, Phys. Stat. Sol. B, Vol. 100, pp. 43-56 (1980).
[6] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Phys. Rev. B, Vol. 45, pp. 13367-13377 (1992).
[7] N. H. Nickel and W. Beyer “Hydrogen in semiconductors II”, Semiconductors and Semimetals, Vol. 61, p. 165, Academic Press, San Diego (1999).
[8] M. A. Ghazala, W. Beyer, and H. Wagner, “Long-term stability of hydrogenated amorphous germanium measured by infrared absorption”, J. Appl. Phys., Vol. 70, pp. 4540-4543 (1991).
[9] M. I. Alonso and K. Winer, “Raman spectra of c-Si1-xGex alloys”, Phy. Rev. B, Vol 39, no. 14 (1989).
[10] P. R. Poulsen, M. Wang, J. Xu, W. Li, K. Chen, G. Wang, and D. Feng, “Role of hydrogen surface coverage during anodic plasma deposition of hydrogenated nanocrystalline germanium”, J. Appl. Phys. Vol. 84, pp. 3386-3391 (1998).
[11]D. Dasa and K. Bhattacharya, “Characterization of the Si:H network during transformation from amorphous to micro- and nanocrystalline structures”, J. Appl. Phys., Vol. 100, pp. 103701-1-103701-8 (2006).
[12] L. Zanzig,a) W. Beyer, and H. Wagner, “High quality hydrogenatedamorphous germanium prepared by the hot wire technique”, Appl. Phys. Lett., Vol. 67, pp. 1567-1569 (1995).
[13] T. Matsui, C. W. Chang, M. Kondo, K. Ogata, and M. Isomura, “Effect of illumination-induced space charge on photocarrier transport in hydrogenated microcrystalline Si1-xGex p-i-n solar cells”, Appl. Phys. Lett., Vol. 91, pp. 102111-1-102111-3 (2007).