| 研究生: |
羅振倫 Luo, Zhen-Lun |
|---|---|
| 論文名稱: |
三角晶格聲子晶體的彈性波拓樸波長多工器研究 Wavelength Demultiplexer of Elastic Waves Achieved by Topological Triangular Lattice Phononic Crystals |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 聲子晶體 、波長多工器 、拓樸邊緣模態 、彈性波 、共振腔 、線缺陷 |
| 外文關鍵詞: | phononic crystal, wavelength demultiplexer, topological edge modes, elastic wave, resonate cavity, line defect |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究對聲子晶體的拓撲邊緣模態、共振腔和缺陷模態做結合並應用於波長多工器,提出用作彈性波多工器的二維聲子晶體結構,設計的聲子晶體由樑中嵌入三角形質量塊組成,整體結構皆採用鋼,以此單位晶格為基礎作為多工器的基本結構。輸入波導採用的是拓樸邊緣模態之介面,利用破壞原本基本結構的空間反轉對稱性,使其產生僅在介面處傳遞的波導。此外還設計了共振腔,當輸入波導之能量為共振腔之共振頻率時,其能量會被共振腔擷取,共振腔是由超晶胞中的點缺陷製成的,本文設計方法為在去除一部份之結構後再另外加入一個圓柱體,利用改變圓柱半徑可以有效調整共振頻率。接著,還設計了可以與共振腔耦合的線缺陷輸出波導,使共振腔所擷取之能量能夠沿著輸出波導輸出至輸出端。以上述之方式首先建立一單通道結構,觀察其輸出端所接收能量之情形,再由單通道加以延伸至二、三、四通道,通過有限元分析軟件COMSOL Multiphysics®進行全波模擬,由模擬出之位移響應圖可以明顯看出皆在輸出端獲得共振腔的共振頻率。最後,設計另一結構,其輸入波導為與輸出波導相同的線缺陷,並與拓撲介面之波導進行比較,由兩者結果可觀察到,使用拓撲波導比線缺陷波導更好地擷取特定頻率。
This study introduces the two-dimensional phononic crystal structure that operates as an elastic wave demultiplexer. It combined by topological edge modes, resonant cavity, and defect modes of phononic crystals and apply them to wavelength demultiplexer. The designed phononic crystal is composed of an unit cell of the beam add with triangular mass. It will be the basic structure of the demultiplexer. The input waveguide structure breaks the space reversal symmetry of the basic structure, which only occurs at the interface between topologically inequivalent phononic crystals. Then the resonant cavity was designed to capture the resonance frequency from input waveguide. Cavity was made of a point defect in the super cell, also add a cylinder into it. Cylinder can adjust the resonance frequency by changing its radius. After manufacturing cavities, a line-defect output waveguide was designed to couple with cavity. The final structure in this thesis is a four-channel demultiplexer. It was analyzed by the finite element software COMSOL Multiphysics®, and studied its full-wave simulation. Obviously, it can respectively obtain every cavity’s resonance frequency at the output. Also, the line-defect input waveguide that same as output waveguide was designed. The structure’s result was compared with topological waveguide. To capture the specific resonance frequency, using topological waveguide is more accurate than line-defect waveguide.
[1] David J. Thouless and J. Michael KosterlitzThe, “Nobel Prize in Physics 2016- Scientific background: Topological phase transitions and topological phases of matter.”The Nobel Prize, (2016)
[2] L. Y. Wu, L. W. Chen, and C. M. Liu, “Acoustic energy harvesting using resonant cavity of a sonic crystal.” Applied Physics Letters, Vol. 95, p.03156. (2009)
[3] L. Y. Wu, L. W. Chen, and C. M. Liu, “Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions.” Physics Letters A, Vol. 373, pp. 1189-1195 (2009)
[4] L. Y. Wu, L. W. Chen, and C. M. Liu, “Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal.” Physica B: Condensed Matter, Vol. 404, pp. 1766-1770 (2009)
[5] M. M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional composites.” The Journal of the Acoustical Society of America, Vol. 101, pp. 1256-1661 (1997)
[6] F. G. Wu, Z. L. Hou, and Z. Y. Liu, and Y. Y. Liu, “Point defect states in two-dimensional phononic crystals.” Physics Letters A, Vol. 292, pp. 198-202 (2001)
[7] Y. C. Zhao and L. B. Yuan, “Characteristics of multi-point defect modes in 2D phononic crystals.” Journal of Physics D: Applied Physics, Vol. 42, p.015403 (2009)
[8] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics.” Physical Review Letters, Vol. 58, No. 20, pp. 2059-2062. (1987)
[9] S. John, “Strong localization of photons in certain disordered dielectric superlattices.” Physical Review Letters, Vol. 58, No. 23, pp. 2486-2489. (1987)
[10] L. Brillouin, “Wave propagation in periodic structures.” 2nd ed, Dover, New York (1953)
[11] E. Yablonovitch, T. Gmitter, and K.Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms” Physical Review Letters, Vol. 67, No. 17, p. 2295. (1991)
[12] M. Sigalas and E. Economou, “Elastic and acoustic wave band structure”, Journal of Sound and Vibration, Vol. 158, No. 2, pp. 377-382 (1992)
[13] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites.”, Physiacl Review Letters, Vol. 71, No. 13, pp. 2022-2025 (1993)
[14] M. S. Kushwaha, and P. Halevi, “Band-gap engineering in periodic elastic composites.”, Applied Physics Letters, Vol. 64, No.9, pp. 1085-1087 (1994).
[15] R. Martinezsala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares and F. Meseguer, “Sound attenuation by sculpture. ”, Nature, Vol. 378, No. 6554, pp. 241-241 (1995)
[16] S.A. Cummer, J. Christensen, and A. Alù, “Controlling sound with acoustic metamaterials. ”, Nature Reviews Materials, Vol. 1, p. 16001 (2016)
[17] H. Peng, and P.F. Pai, “Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression.”, International Journal of Mechanical Sciences, Vol. 89, pp. 350-361 (2014)
[18] H. Peng, P.F. Pai, and H. Deng, “Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression.”, International Journal Mechanical Sciences, Vol. 103, pp. 104-114 (2015)
[19] A. Bousfia, E. H. El Boudouti, B. Djafari-Rouhani, D. Bria, A. Nougaouia, and V. R. Velasco,“Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures.”, Surface Science, Vol. 482-485, pp. 1175-1180 (2001)
[20] B. Manzanares-Martínez, and J. Sánchez-Dehesa, A. Håkansson,“Experimental evidence of omnidirectional elastic bandgap in finite one-dimensional phononic systems.”, Applied Physics Letters, Vol. 85, No. 1, pp. 154-156 (2004)
[21] M. Ruzzene , and A. Baz,“Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts.”, Journal of Vibration Acoustics, Vol. 122, No. 2, pp. 151-159 (2000)
[22] T. Chen, M. Ruzzene, and A. Baz,“Control of Wave Propagation in Composite Rods Using Shape Memory Inserts: Theory and Experiments.”, Journal of Vibration and Control, Vol. 6, No. 7, pp. 1065-1081 (2000)
[23] W. P. Yang and L. W. Chen,“The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator.”, Smart Materials and Structures, Vol. 17, No. 1, p. 015011 (2007)
[24] W. P. Yang and L. W. Chen,“Control analysis of the tunable phononic crystal with electrorheological material.”, Physica B: Condensed Matter, Vol. 400, No. 1-2, pp. 137-144 (2007)
[25] R. Martínez-Sala, J. Sancho, J. V. Sánchez, V. Gómez, J. Llinares, and F. Meseguer, “Sound attenuation by sculpture.”, Nature, Vol. 378, No. 6554, p. 241 (1995)
[26] S. Raghu, and F. D. M. Haldane,“Analogs of quantum-Hall-effect edge states in photonic crystals.”, Physiacal Review A, Vol. 78, No. 3, p. 033834 (2008)
[27] P. Wang, and L. Lu, K. Bertoldi,“Topological Phononic Crystals with One-Way Elastic Edge Waves.”, Physical Review Letters, Vol. 115, No. 10, p. 104302 (2015)
[28] K. von Klitzing, G. Dorda and M. Pepper, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance.” Physical Review Letters, Vol. 45, pp. 494-497. (1980)
[29] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential.” Physical Review Letters, Vol. 49, pp. 405-408. (1982)
[30] T. Fukui, Y. Hatsugai and H. Suzuki, “Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances.”, Journal of the Physical Society of Japan, Vol. 74, pp. 1674-1677. (2005)
[31] C. L. Kane, “Topological Band Theory and the Z2 Invariant.” Contemporary Concepts of Condensed Matter Science, Vol. 6, pp. 3-34. (2013)
[32] M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 392, pp. 45-57. (1984)
[33] Y. Hatsugai, “Chern number and edge states in the integer quantum Hall effect.” Physical Review Letters, Vol. 71, pp. 3697-3700. (1993)
[34] C. L. Kane, and E. J. Mele, “Quantum Spin Hall Effect in Graphene.” Physical Review Letters, Vol. 65, p. 226801. (2005)
[35] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells.” Science, Vol. 314, pp. 1757-1761. (2006)
[36] Rycerz, A., J. Tworzydlo, and C. W. J. Beenakker. “Valley Filter and Valley Valve in Graphene.” Nature Physics, Vol. 3, pp. 172-175. (2007)
[37] D. Xiao, W. Yao, and Q. Niu. “Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport.” Physical Review Letters, Vol. 99, pp. 236809. (2007)
[38] T. W. Liu and F. Semperlotti, “Tunable Acoustic Valley–Hall Edge States in Reconfigurable Phononic Elastic Waveguides.”, Physical Review Applied, Vol. 9, No.1, p. 014001. (2018)
[39] T. Ma and G. Shvets, “All-Si Valley-Hall Photonic Topological Insulator.” New Journal of Physics, Vol. 18, p. 025012. (2016)
[40] S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, “Observation of elastic topological states in soft materials.” Nature Communications, Vol. 9, no. 1, p. 1370. (2018)
[41] Y. Jin, D. Torrent, and B. Djafari-Rouhani, “Robustness of conventional and topologically protected edge states in phononic crystal plates.” Physical Review B, Vol. 98, no. 5, p. 054307. (2018)
[42] M. Yan et al, “On-chip valley topological materials for elastic wave manipulation.” Nature Materials, Vol. 17, no. 11, pp. 993-998. (2018)
[43] X. Wen, C. Qiu, J. Lu, H. He, M. Ke, and Z. Liu, “Acoustic Dirac degeneracy and topological phase transitions realized by rotating scatters.” Journal of Applied Physics, Vol. 123, no. 9, p. 091703. (2018)
[44] M. M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional composites.”, The Journal of the Acoustical Society of America, Vol. 101, No. 3, p. 1256 (1996)
[45] M. M. Sigalas, “Defect states of acoustic waves in a two-dimensional lattice of solid cylinders.”, Journal of Applied Physics, Vol. 84, No. 6, p. 3026 (1998)
[46] F. Wu, Z. Liu, and Y. Liu, “Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals”, Physical Review E, Vol. 69, No. 6, p. 066609 (2004)
[47] J. Chen, J. C. Cheng, and B. Li, “Dynamics of elastic waves in two-dimensional phononic crystals with chaotic defect.”, Applied Physics Letters, Vol. 91, No. 12, p. 121902 (2007)
[48] L. Y. Wu, L. W. Chen, and C. M. Liu, “Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions.”, Physics Letters A, Vol. 373, No. 12-13, pp. 1189-1195 (2009)
[49] X. Zhang, H. Dan, F. Wu, and Z. Liu, “Point defect states in 2D acoustic band gap materials consisting of solid cylinders in viscous liquid”, Journal of Physics D: Applied Physics, Vol. 41, No. 15, p. 155110 (2008)
[50] Y. Pennec, B. Djafari-Rouhani, J.O. Vasseur, A. Khelif, and P.A. Deymier, “Tunable filtering and demultiplexing in phononic crystals with hollow cylinders.”, Physics Review E, Vol. 69, p. 046608 (2004)
[51] B. Rostami-Dogolsara, M. K. Moravvej-Farshi, and F. Nazari, “Designing switchable phononic crystal-based acoustic demultiplexer.”, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 63, pp. 1468-1473 (2016)
[52] P. Moradi and A. Bahrami, “Three channel GHz-ranged demultiplexer in solid-solid phononic crystals.”, Chinese Journal Physics, Vol. 59, pp. 291-297 (2019)
[53] J. N. Reddy, “An introduction to the finite element method.” 3rd edition, McGraw-Hill, New York. (2006)
[54] J.-J Chen, S.-Y. Huo, Z.-G. Geng, H.-B. Huang, and X.-F. Zhu, “Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface.”, AIP Advances, Vol. 7, No.11, p. 115215. (2017)
[55] J. Mei, Y. Wu, C. T. Chan, and Z. Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals.”, Physical Review B, Vol. 86, No.3, p. 035141. (2012)
校內:不公開