| 研究生: |
謝健瑀 Hsieh, Chien-Yu |
|---|---|
| 論文名稱: |
柱狀多孔鈣基骨取代物性質研究 Properties of Rod-shaped Porous Calcium-based Bone Substitute |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 鈣基骨取代物 、抗壓強度 、孔隙率 |
| 外文關鍵詞: | calcium bone substitute, compressive strength, porosity |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用與CMRT(Cana Materials Research Team)研究團隊開發的多孔性calcium-based bone substitute(CBS)相同基底成分,希望能夠在維持相同優秀的物化和生物性質下,研發柱狀多孔鈣基骨取代物(CBSR),使其表面具有緻密層能夠阻擋軟組織進入,讓骨細胞有良好的生長空間。
本實驗第一部分為將藉由改變製程參數增加緻密層連續比例,其緻密層連續比例達97.63%,抗壓強度和孔隙率分別為2.18MPa和78.72%之孔隙率,進行第二部分實驗,藉由改變CBC與硬化劑的比例試圖繼續增加緻密層連續比例,而找到最佳條件為製程參數C-3,緻密層連續比例達99.01%,同時抗壓強度和孔隙率也達2.16MPa、79.85%。
CBS(calcium-based bone substitute) developed by CMRT(Cana Materials Research Team) has excellent physical properties, chemical properties, and biocompatibility. We use the same raw materials as CBS to make rod-shaped porous calcium-based bone substitutes and a dense layer, which prevents excessive penetration of fibrous tissue into the bone defect, can be formed on the surface.
Using the compression process makes a dense layer appear on the surface. The experimental results showed that it has high porosity, enough compressive strength, and high dense layer continuity.
Albee, F. H. (1920). Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis. Annals of surgery, 71(1), 32.
Amathieu, L., & Boistelle, R. (1988). Crystallization kinetics of gypsum from dense suspension of hemihydrate in water. Journal of Crystal Growth, 88(2), 183-192.
Ambard, A. J., & Mueninghoff, L. (2006). Calcium Phosphate Cement: Review of Mechanical and Biological Properties. Journal of Prosthodontics, 15(5), 321-328. doi:10.1111/j.1532-849X.2006.00129.x
ASHLEY, F. L., STONE, R. S., Alonso-Artieda, M., SYVERUD, J. M., EDWARDS, J. W., SLOAN, R. F., . . . Surgery, R. (1959). Experimental and clinical studies on the application of monomolecular cellulose filter, tubes to create artificial tendon sheaths in digits. 23(5), 526-534.
Bauer, T. W., Muschler, G. F. J. C. O., & Research®, R. (2000). Bone graft materials: an overview of the basic science. 371, 10-27.
Bell, W. H. (1964). Resorption characteristics of bone and bone substitutes. Oral Surgery, Oral Medicine, Oral Pathology, 17(5), 650-657.
Bohner, M. J. B. (2004). New hydraulic cements based on α-tricalcium phosphate–calcium sulfate dihydrate mixtures. 25(4), 741-749.
Brown, W. E., & Chow, L. C. (1983). A NEW CALCIUM-PHOSPHATE SETTING CEMENT. Journal of Dental Research, 62, 672-672.
C. Chow, L. (2009). Next generation calcium phosphate-based biomaterials. Dental Materials Journal, 28(1), 1-10. doi:10.4012/dmj.28.1
Chang, B.-S., Lee, i. C. K. f. C.-K., Hong, K.-S., Youn, H.-J., Ryu, H.-S., Chung, S.-S., & Park, K.-W. (2000). Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, 21(12), 1291-1298.
Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 87, 1-57. doi:10.1016/j.mser.2014.10.001
Chow, L. (1988). Calcium phosphate materials: reactor response. Advances in dental research, 2(1), 181-186.
Chow, L. C. (2001). Calcium Phosphate Cements. In Octacalcium Phosphate (pp. 148-163): Basel, Karger.
Coetzee, A. S. (1980). Regeneration of bone in the presence of calcium sulfate. Archives of Otolaryngology, 106(7), 405-409.
Dahlin, C., Linde, A., Gottlow, J., Nyman, S. J. P., & surgery, r. (1988). Healing of bone defects by guided tissue regeneration. 81(5), 672-676.
Dorozhkin, S. V. (2011). Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter, 1(2), 121-164.
Dorozhkin, S. V. (2016). Calcium orthophosphate-based bioceramics and biocomposites: John Wiley & Sons.
Dressman, H. (1892). Uber Knochenplombierung. Beitr Klin Chir, 9, 804-810.
Edberg, E. (1930). Some experiences of filling osseous cavities with plaster. Acta Chir Scand, 67, 313-319.
Eggli, P., Müller, W., & Schenk, R. (1988). Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clinical Orthopaedics and Related Research(232), 127-138.
Fernandez de Grado, G., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A. M., Benkirane-Jessel, N., . . . Offner, D. (2018). Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng, 9, 2041731418776819. doi:10.1177/2041731418776819
Florencio-Silva, R., Sasso, G. R. d. S., Sasso-Cerri, E., Simões, M. J., & Cerri, P. S. J. B. r. i. (2015). Biology of bone tissue: structure, function, and factors that influence bone cells. 2015.
Frame, J. (1975). Porous calcium sulphate dihydrate as a biodegradable implant in bone. Journal of dentistry, 3(4), 177-187.
Ghasemi-Mobarakeh, L., Kolahreez, D., Ramakrishna, S., & Williams, D. (2019). Key terminology in biomaterials and biocompatibility. Current Opinion in Biomedical Engineering, 10, 45-50. doi:10.1016/j.cobme.2019.02.004
Godara, A., Raabe, D., & Green, S. J. A. B. (2007). The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications. 3(2), 209-220.
Hauptli, O. (1952). Die Gipsplombe zur Ausfullung von fehlendem Knochengewebe. Schweizerische Medizinische Wochenschrift, 82(7), 161-168.
Hu, G., Xiao, L., Fu, H., Bi, D., Ma, H., & Tong, P. J. J. o. M. S. M. i. M. (2010). Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. 21(2), 627-634.
Hulbert, S., Hench, L., Forbers, D., & Bowman, L. J. C. i. (1982). History of bioceramics. 8(4), 131-140.
Hulbert, S. F., Morrison, S. J., & Klawitter, J. J. (1972). Tissue reaction to three ceramics of porous and non-porous structures. Journal of Biomedical Materials Research, 6(5), 347-374. doi:10.1002/jbm.820060505
Jarcho, M. (1981). Calcium phosphate ceramics as hard tissue prosthetics. Clinical Orthopaedics and Related Research®, 157, 259-278.
Kahnberg, K.-E. J. I. j. o. o. s. (1979). Restoration of mandibular jaw defects in the rabbit by subperiosteally implanted Teflon® mantle leaf. 8(6), 449-456.
Klawitter, J. J., Bagwell, J. G., Weinstein, A. M., Sauer, B. W., & Pruitt, J. R. (1976). An evaluation of bone growth into porous high density polyethylene. Journal of Biomedical Materials Research, 10(2), 311-323. doi:10.1002/jbm.820100212
Klawitter, J. J., & Hulbert, S. F. (1971). Application of porous ceramics for the attachment of load bearing internal orthopedic applications. Journal of Biomedical Materials Research, 5(6), 161-229. doi:10.1002/jbm.820050613
Kofmann, S. (1925). Gips als plombenmaterial. Zentralbl. Chir, 52, 1817-1818.
Kuzel, H.-J., & Hauner, M. (1987). Chemische und kristallographische Eigenschaften von Calciumsulfat-Halbhydrat und Anhydrit III. ZKG international, 40(12), 628-632.
Ljubovic, E., & Nikulin, A. (1956). Plastic plombage in experimental bone regeneration. Acta medica Iugoslavica, 10(1), 1.
Lobb, D. C., DeGeorge, B. R., Jr., & Chhabra, A. B. (2019). Bone Graft Substitutes: Current Concepts and Future Expectations. J Hand Surg Am, 44(6), 497-505 e492. doi:10.1016/j.jhsa.2018.10.032
Lu, J., Flautre, B., Anselme, K., Hardouin, P., Gallur, A., Descamps, M., & Thierry, B. (1999). Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. Journal of Materials Science: Materials in Medicine, 10(2), 111-120.
Marques, C. F., Perera, F. H., Marote, A., Ferreira, S., Vieira, S. I., Olhero, S., . . . Ferreira, J. M. F. (2017). Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties. Journal of the European Ceramic Society, 37(1), 359-368.
Melcher, A. J. A. o. O. B. (1969). Role of the periosteum in repair of wounds of the parietal bone of the rat. 14(9), 1101-IN1125.
Miller, M. D., & Thompson, S. R. (2015). Miller's review of orthopaedics: Elsevier Health Sciences.
Murray, G., Holden, R., & Roschlau, W. J. T. A. J. o. S. (1957). Experimental and clinical study of new growth of bone in a cavity. 93(3), 385-387.
Myerson, A. (2002). Handbook of industrial crystallization: Butterworth-Heinemann.
Nilsson, M., Fernandez, E., Sarda, S., Lidgren, L., Planell, J. J. J. o. B. M. R. A. O. J. o. T. S. f. B., The Japanese Society for Biomaterials,, Biomaterials, T. A. S. f., & Biomaterials, t. K. S. f. (2002). Characterization of a novel calcium phosphate/sulphate bone cement. 61(4), 600-607.
Nystrom, G. (1928). Plugging of bone cavities with rivanol-plaster porridge. Acta Chir Scand, 63, 296.
Orsini, G., Ricci, J., Scarano, A., Pecora, G., Petrone, G., Iezzi, G., & Piattelli, A. (2004). Bone‐defect healing with calcium‐sulfate particles and cement: An experimental study in rabbit. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 68(2), 199-208.
Parida, P., Behera, A., & Mishra, S. C. (2012). Classification of Biomaterials used in Medicine.
Park, J. B. (1985). Biomaterials Science and Engineering. IEEE Transactions on Biomedical Engineering, BME-32(11), 990-990. doi:10.1109/TBME.1985.325653
Peltier, L. F. (1961). The use of plaster of Paris to fill defects in bone. Clinical Orthopaedics and Related Research®, 21, 1-31.
Pneumaticos, S. G., Triantafyllopoulos, G. K., Basdra, E. K., & Papavassiliou, A. G. (2010). Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments. J Cell Mol Med, 14(11), 2561-2569. doi:10.1111/j.1582-4934.2010.01062.x
Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2013). Biomaterials science: An evolving, multidisciplinary endeavor. In: Elsevier.
Ray, R. (1951). A preliminary report on studies of basic calcium phosphate in bone replacement. Paper presented at the Surgical forum.
Ribas, R. G., Schatkoski, V. M., Montanheiro, T. L. d. A., de Menezes, B. R. C., Stegemann, C., Leite, D. M. G., & Thim, G. P. (2019). Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: A review. Ceramics International, 45(17), 21051-21061. doi:10.1016/j.ceramint.2019.07.096
Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I., & Grigolo, B. (2017). Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C Mater Biol Appl, 78, 1246-1262. doi:10.1016/j.msec.2017.05.017
Scantlebury, T. V. J. J. o. p. (1993). 1982‐1992: A decade of technology development for guided tissue regeneration. 64, 1129-1137.
Shepperd, J. (2004). The early biological history of calcium phosphates. In Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty (pp. 3-8): Springer.
Singh, N., & Middendorf, B. (2007). Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in crystal growth and characterization of materials, 53(1), 57-77.
Smith, L. (1963). Ceramic-plastic material as a bone substitute. Archives of Surgery, 87(4), 653-661.
Song, H.-Y., Rahman, A. E., & Lee, B.-T. J. J. o. M. S. M. i. M. (2009). Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid. 20(4), 935-941.
Strocchi, R., Orsini, G., Iezzi, G., Scarano, A., Rubini, C., Pecora, G., & Piattelli, A. (2002). Bone regeneration with calcium sulfate: evidence for increased angiogenesis in rabbits. Journal of oral implantology, 28(6), 273-278.
Thomas, M. V., & Puleo, D. A. (2009). Calcium sulfate: Properties and clinical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 88(2), 597-610.
Urban, R. M., Turner, T. M., Hall, D. J., Inoue, N., Gitelis, S. J. C. O., & Research®, R. (2007). Increased bone formation using calcium sulfate-calcium phosphate composite graft. 459, 110-117.
W.Bonfield. (1988, 11). Composites for bone replacement. Journal of Biomedical Engineering, 522-526.
Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater, 2(4), 224-247. doi:10.1016/j.bioactmat.2017.05.007
Wei, J., Jia, J., Wu, F., Wei, S., Zhou, H., Zhang, H., . . . Liu, C. (2010). Hierarchically microporous/macroporous scaffold of magnesium–calcium phosphate for bone tissue regeneration. Biomaterials, 31(6), 1260-1269.
Yang, Z., Yuan, H., Tong, W., Zou, P., Chen, W., & Zhang, X. (1996). Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials, 17(22), 2131-2137.
Yuan, H., Kurashina, K., de Bruijn, J. D., Li, Y., de Groot, K., & Zhang, X. (1999). A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials, 20(19), 1799-1806.
校內:2025-08-23公開