研究生: |
劉家豪 Liu, Chia-Hao |
---|---|
論文名稱: |
電遷移效應對高鉛銲錫合金微觀組織的影響 The Effect of Electromigration on the Microstructure of 95Pb-5Sn Alloy |
指導教授: |
林光隆
Lin, Kwang-Lung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 電遷移 、高鉛銲錫合金 、極限過飽和濃度 |
外文關鍵詞: | electromigration, 95Pb5Sn, maximum supersaturation concentration |
相關次數: | 點閱:91 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究觀察高鉛銲錫合金(95wt.%Pb-5wt.%Sn)在不同電流密度下通電,其內部晶粒的消長行為,並進行拉伸試驗,觀察電流對高鉛銲錫線材之機械性質的影響。
拉伸試驗的結果顯示,分別在電流密度2.0 × 103 A/cm2下通電5天、10天及15天,線材的最大抗拉強度會隨著通電時間的增加而下降,經由後續的實驗結果得知,在此電流密度下通電,將會造成銲錫合金內部晶粒粗大化,進而降低了線材的機械強度。
臨場(In-situ)觀察試片在通電過程發生的微觀組織變化,可發現,在電流密度2.5 × 103 A/cm2及5.0 × 103 A/cm2下通電,第二相錫會聚集成面積較大的富錫相,然而,在電流密度1.0 × 104 A/cm2下通電,第二相錫會逐漸消失,停止通電後再經幾個小時,錫則會以纖維狀析出,且在連續觀察實驗中發現,通電時間越長,第二相錫的消失量會增加,而析出的纖維狀錫也會變多,推測在通電過程中錫會固溶進富鉛基地相中,並以纖維狀的型態析出。
通電促進錫的固溶,使富鉛基地相內的錫濃度值會增加,電流密度大於5.0 × 103 A/cm2使富鉛基地相內的錫濃度值超出相平衡圖所敘述的飽和濃度,每電流密度所達到的最大飽和濃度定義為極限過飽和濃度,電流密度越高,極限過飽和濃度越大。
This research investigated the effect of electromigration with different current density on the microstructure of 95Pb-5Sn. .Besides, the high lead solder wires when investigated for the effect of electromigration on the mechanical properties.
The ultimate tensile strength of the solder wires decreases with electromigration time when stressed with 2.0 × 103 A/cm2 current density for 5 ~ 15days. The electromigration test was found to coarsen the grain of solder alloy at this current density.
The second Sn phase would coarsen with the current densities of 2.5 × 103 A/cm2 and 5.0 × 103 A/cm2. However, the second Sn phase would disappear after current stressing at 1.0 × 104 A/cm2, then convert to fibrous structure after current stop for a few hours. Sn was found to dissolve into the Pb-rich phase with current stressing then precipitate in fibrous structure.
The current stressing enhances the dissolution of Sn in the Pb-rich phase. At current density higher than 5.0 × 103 A/cm2, the concentration of Sn in the Pb-rich phase would transcend the saturation concentration stated by the thermal equilibrium. The maximum concentration achieved at each current density is defined as maximum supersaturation concentration. The maximum supersaturation concentration of Sn in Pb-rich phase would increase with current density.
1. M. Abtew, G. Selvaduray, "Lead-Free Solders in Microelectronics", Materials Science & Engineering R-Reports, Vol. 27, 2000, pp. 95~141.
2. J. Glazer, "Metallurgy of Low-Temperature Pb-Free Solders For Electronic Assembly", International Materials Reviews, Vol. 40, 1995, pp. 65~93.
3. M. McCormack, I. Artaki, S. Jin, A. M. Jackson, D. M. Machusak, G. W. Kammlott, D. W. Finley, "Wave Soldering with a Low Melting Point Bi-Sn Alloy: Effects of Soldering Temperatures and Circuit Board Finishes", Journal of Electronic Materials, Vol. 25, 1996, pp. 1128~1131.
4. M. E. Loomans, S. Vaynman, G. Ghosh, M. E. Fine, "Investigation of Multicomponent Lead-Free Solders", Journal of Electronic Materials, Vol. 23, 1994, pp. 741~746.
5. M. McCormack, S. H. Jin, "Progress in The Design of New Lead-Free Solder Alloys", Jom-Journal of the Minerals Metals & Materials Society, Vol. 45, 1993, pp. 36~40.
6. P. T. Vianco, F. M. Hosking, J. A. Rejent, "Wettibility of Metallic-Glass Alloys by 2 Tin-Based Soders", Welding Journal, Vol. 73, 1994, pp. S153~S163.
7. M. McCormack, S. Jin, H. S. Chen, D. A. Machusak, "New Lead-Free, Sn-Zn-In Solder Alloys", Journal of Electronic Materials, Vol. 23, 1994, pp. 687~690.
8. W. Dauksher, J. Lau, "A Finite-Element-Based Solder-Joint Fatigue-Life Prediction Methodology for Sn-Ag-Cu Ball-Grid-Array Packages", Ieee Transactions on Device and Materials Reliability, Vol. 9, 2009, pp. 231~236.
9. Y. W. Shi, J. P. Liu, Z. D. Xia, Y. P. Lei, F. Guo, X. Y. Li, "Study on Creep Characterization of Nano-Sized Ag Particle-Reinforced Sn-Pb Composte Solder Joints", Journal of Materials Science-Materials in Electronics, Vol. 21, 2010, pp. 256~261.
10. F. Ren, J. W. Nah, K. N. Tu, B. S. Xiong, L. H. Xu, J. H. L. Pang, "Electromigration Induced Ductile-to-Brittle Transition in Lead-Free Solder Joints", Applied Physics Letters, Vol. 89, 2006, pp. 141914~141914-141913.
11. X. R. Zhang, Z. F. Yuan, H. X. Zhao, L. K. Zang, J. Q. Li, "Wetting Behavior and Interfacial Characteristic of Sn-Ag-Cu Solder Alloy on Cu Substrate", Chinese Science Bulletin, Vol. 55, 2010, pp. 797~801.
12. H. J. Lin, J. S. Lin, T. H. Chuang, "Electromigration of Sn-3Ag-0.5Cu and Sn-3Ag-0.5Cu-0.5Ce-0.2Zn Solder Joints With Au/Ni(P)/Cu and Ag/Cu Pads", Journal of Alloys and Compounds, Vol. 487, 2009, pp. 458~465.
13. G. A. Rinne, "Issues in Accelerated Electromigration of Solder Bumps", Microelectronics Reliability, Vol. 43, 2003, pp. 1975~1980.
14. M. Tammaro, "Investigation of The Temperature Dependence in Black's Equation Using Microscopic Electromigration Modeling", Journal of Applied Physics, Vol. 86, 1999, pp. 3612~3615.
15. D. Gupta, J. M. Oberschmidt, "Diffusion Processes in Lead Based Solders Used in Microelectronic Industry", Presented at Proceedings of Design and Reliability of Solders and Solder Interconnections Symposium, 59-64
16. J. Niehof, H. C. de-Graaff, A. J. Mouthaan, J. F. Verwey, "An Empirical Model for Early Resistance Changes Due to Electromigration", Solid-State Electronics, Vol. 38, 1995, pp. 1817~1827.
17. J. Niehof, H. C. de-Graaff, A. J. Mouthaan, J. F. Verwey, "Critical Review of 1-Particle Models in Electromigration Resistance Change Modeling", Presented at Materials Reliability in Microelectronics IV.
18. T. Mouthaan, V. Petrescu, W. Schoenmaker, F. Groot, S. Angelescu, J. Niehof, "Early Resistance Change Modelling in Electromigration", Proceedings of 25th European Solid State Device Research Conference.
19. P. Shewmon, Diffusion in Solid, The Minerals, Metals & Materials Society, USA, 1989, Chapter 7.
20. H. B. Huntington, Diffusion in Solids : Recent Developments, edited by A. S. Nowick and J. J. Burton, Academic Press, New York, 1975, pp. 303~352.
21. C. Y. Liu, C. Chen, K. N. Tu, "Electromigration in Sn-Pb Solder Strips as A Function of Alloy Composition", Journal of Applied Physics, Vol. 88, 2000, pp. 5703~5709.
22. J. A. Nucci, A. Straub, E. Bischoff, E. Arzt, C. A. Volkert, "Growth of Electromigration-Induced Hillocks in Al Interconnects", Journal of Materials Research, Vol. 17, 2002, pp. 2727~2735.
23. J. Cheng, S. Chen, P. T. Vianco, J. C. M. Li, "Quantitative Analysis for Hillocks Grown From Electroplated Sn Film", Journal of Applied Physics, Vol. 107, 2010, pp. 074902~074902-4.
24. Y. Yao, L. M. Keer, M. E. Fine, "Electromigration effect on pancake type void propagation near the interface of bulk solder and intermetallic compound", Journal of Applied Physics, Vol. 105, 2009.
25. K. N. Tu, "Irreversible Processes of Spontaneous Whisker Growth in Bimetallic Cu-Sn Thin-Film Reactions", Physical Review B, Vol. 49, 1994, pp. 2030~2034.
26. I. A. Blech, "Electromigration in Thin Aluminum Films on Titanium Nitride ", Journal of Applied Physics, Vol. 47, 1976, pp. 1203~1208.
27. M. A. Korhonen, P. Borgesen, K. N. Tu, C. Y. Li, "Stress Evolution Due to Electromigration in Confined Metal Lines", Journal of Applied Physics, Vol. 73, 1993, pp. 3790~3799.
28. K. N. Tu, C. C. Yeh, C. Y. Liu, C. Chen, "Effect of Current Crowding on Vacancy Diffusion and Void Formation in Electromigration", Journal of Applied Physics, Vol. 76, 2000, pp. 988~990.
29. C. Y. Liu, C. Chen, K. N. Tu, "Electromigration of Sn-Pb Solder Strips as a Function of Alloy Composition", Journal of Applied Physics, Vol. 88, 2000, pp. 5703~5709.
30. C. Y. Liu, C. Chen, C. N. Liao, K. N. Tu, "Microstructure- Electromigration Correlateion in A Thin Stripe of Eutectic SnPb Solder Stressesd Between Cu Electrodes", Journal of Applied Physics, Vol. 75, 1999, pp. 58.
31. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metal Park, Ohio, USA, Vol. 2, 1986, pp. 1848.
32. D. A. Porter, K. E. Easterling, Phase Transformations in Metals and Alloys, Second Edition, Taylor & Francis, 2004, pp. 71~75.
33. B. Y. Wu, H. W. Zhong, Y. C. Chan, M. O. Alam, "Degradation of Sn37Pb and Sn3.5Ag0.5Cu Solder Joints Between Au/Ni (P)/Cu Pads Stressed With Moderate Current Density", Journal of Materials Science-Materials in Electronics, Vol. 17, 2006, pp. 943~950.
34. B. T. Lampe, "Room-Temperature Aging Properties of Some Solder Alloys", Welding Journal, Vol. 55, 1976, pp. S330~S340.
35. C. M. Chuang, T. S. Lui, L. H. Chen, "Effect of Aluminum Addition on Tensile Properties of Naturally Aged Sn-9Zn Eutectic Solder", Journal of Materials Science, Vol. 37, 2002, pp. 191~195.
36. D. H. Xiao, K. H. Chen, W. H. Luo, "Effect of Solution Heat Treatment on Microstructure and Properties of AA7085 Aluminum Alloys", Rare Metal Materials and Engineering, Vol. 39, 2010, pp. 494~497.
37. B. H. Zhu, B. Q. Xiong, Y. A. Zhang, Y. M. Xiong, "Effect of Heat Treatments on Properties of High Purity Al-Cu-Mg-Ag Alloy with Trace Mn and Zr", Rare Metal Materials and Engineering, Vol. 39, 2010, pp. 144~148.
38. A. M. Gusak, K. N. Tu, T. V. Zaporozhets, "Diffusion-Driven Evolution of Morphology in Metallic Joints and Solder Balls at Electromigration, Thermomigration and Reflow", Metallofizika I Noveishie Tekhnologii, Vol. 31, 2009, pp. 1~22.
39. A. T. Wu, A. M. Gusak, K. N. Tu, C. R. Kao, "Electromigration-induced grain rotation in anisotropic conducting beta tin", Applied Physics Letters, Vol. 86, 2005, pp. 241902~241902-3.
40. A. T. Wua, Y. C. Hsieh, "Direct Observation and Kinetic Analysis of Grain Rotation in Anisotropic Tin Under Electromigration", Applied Physics Letters, Vol. 92, 2008, pp. 121921~121921-3.