簡易檢索 / 詳目顯示

研究生: 劉家豪
Liu, Chia-Hao
論文名稱: 電遷移效應對高鉛銲錫合金微觀組織的影響
The Effect of Electromigration on the Microstructure of 95Pb-5Sn Alloy
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 90
中文關鍵詞: 電遷移高鉛銲錫合金極限過飽和濃度
外文關鍵詞: electromigration, 95Pb5Sn, maximum supersaturation concentration
相關次數: 點閱:91下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究觀察高鉛銲錫合金(95wt.%Pb-5wt.%Sn)在不同電流密度下通電,其內部晶粒的消長行為,並進行拉伸試驗,觀察電流對高鉛銲錫線材之機械性質的影響。
    拉伸試驗的結果顯示,分別在電流密度2.0 × 103 A/cm2下通電5天、10天及15天,線材的最大抗拉強度會隨著通電時間的增加而下降,經由後續的實驗結果得知,在此電流密度下通電,將會造成銲錫合金內部晶粒粗大化,進而降低了線材的機械強度。
    臨場(In-situ)觀察試片在通電過程發生的微觀組織變化,可發現,在電流密度2.5 × 103 A/cm2及5.0 × 103 A/cm2下通電,第二相錫會聚集成面積較大的富錫相,然而,在電流密度1.0 × 104 A/cm2下通電,第二相錫會逐漸消失,停止通電後再經幾個小時,錫則會以纖維狀析出,且在連續觀察實驗中發現,通電時間越長,第二相錫的消失量會增加,而析出的纖維狀錫也會變多,推測在通電過程中錫會固溶進富鉛基地相中,並以纖維狀的型態析出。
    通電促進錫的固溶,使富鉛基地相內的錫濃度值會增加,電流密度大於5.0 × 103 A/cm2使富鉛基地相內的錫濃度值超出相平衡圖所敘述的飽和濃度,每電流密度所達到的最大飽和濃度定義為極限過飽和濃度,電流密度越高,極限過飽和濃度越大。

    This research investigated the effect of electromigration with different current density on the microstructure of 95Pb-5Sn. .Besides, the high lead solder wires when investigated for the effect of electromigration on the mechanical properties.
    The ultimate tensile strength of the solder wires decreases with electromigration time when stressed with 2.0 × 103 A/cm2 current density for 5 ~ 15days. The electromigration test was found to coarsen the grain of solder alloy at this current density.
    The second Sn phase would coarsen with the current densities of 2.5 × 103 A/cm2 and 5.0 × 103 A/cm2. However, the second Sn phase would disappear after current stressing at 1.0 × 104 A/cm2, then convert to fibrous structure after current stop for a few hours. Sn was found to dissolve into the Pb-rich phase with current stressing then precipitate in fibrous structure.
    The current stressing enhances the dissolution of Sn in the Pb-rich phase. At current density higher than 5.0 × 103 A/cm2, the concentration of Sn in the Pb-rich phase would transcend the saturation concentration stated by the thermal equilibrium. The maximum concentration achieved at each current density is defined as maximum supersaturation concentration. The maximum supersaturation concentration of Sn in Pb-rich phase would increase with current density.

    中文摘要 I Abstract II 致謝 III 總目錄 IV 表目錄 VI 圖目錄 VII 第壹章 簡介 1 1-1 電子產品發展簡介 1 1-2 銲錫合金之種類與性質 1 1-3 電遷移 5 1-3-1 電遷移理論 5 1-3-2 共晶錫鉛銲錫的電遷移 9 1-3-3 錫鉛合金的電遷移行為 13 1-4 研究目的 18 第貳章 實驗方法與步驟 19 2-1 實驗構想 19 2-2 銲錫線材的製備 19 2-2-1 線材製備 21 2-3 拉伸試驗 21 2-3-1 通電裝置 21 2-3-2 拉伸實驗試片製備 21 2-3-3 拉伸試驗裝置 26 2-4 連續觀察實驗 26 2-4-1 電遷移實驗裝置 26 2-4-2 連續觀察 31 2-4-3 第二相錫的固溶速率 31 2-4-4 錫在基地相鉛的濃度 31 2-4-5 溫度的量測 34 2-5 時效熱處理實驗 34 第參章 結果與討論 36 3-1 電遷移對高鉛銲錫線材機械性質之影響 36 3-1-1 電遷移與未經通電試片的拉伸性質之比較 36 3-1-2 拉伸破斷面之觀察 39 3-2 連續觀察 44 3-2-1 電流密度2.5 × 103 A/cm2 44 3-2-2 電流密度5.0 × 103 A/cm2 48 3-2-3 電流密度1.0 × 104 A/cm2 48 3-3 固溶在富鉛基地相內的錫濃度量測 56 3-3-1 電流密度5.0 × 103 A/cm2 60 3-3-2 電流密度7.5 × 103 A/cm2 60 3-3-3 電流密度1.0 × 104 A/cm2 68 3-3-4 臨界電流密度(Critical Current Density) 68 3-3-5 纖維狀錫的生成 79 3-4 時效熱處理 81 第肆章 結論 85 參考文獻 86 表目錄 表1- 1常見銲錫合金成份及其熔點1-7 3 表1- 2 Huntington’s擴散型態15 8 表1- 3錫、鉛的晶格常數15 10 表1- 4純金屬的 Z*/f 值20 14 表3- 1通電過程中錫固溶在富鉛基地相中的濃度值 63 表3- 2通電過程中錫固溶在富鉛基地相中的濃度值 66 表3- 3通電過程中錫固溶在富鉛基地相中的濃度值 70 圖目錄 圖1- 1通電前後原子的能障變化14 (a)未通電 (b)通電狀態 7 圖1- 2原子在晶格內移動的路徑13 11 圖1- 3電遷移效應對Sn-Pb二元系統的影響21, 31 15 圖1- 4電子流在銲錫合金內部的路徑13 17 圖2- 1實驗流程圖 20 圖2- 2 (a)抽線製作銲錫線材過程示意圖 22 圖2- 2 (b)銲錫線材冷卻、剪裁過程示意圖 23 圖2- 3銅塊及線材串聯示意圖 24 圖2- 4通電裝置示意圖 25 圖2- 5 (a)壓克力塊 (b)壓克力板 27 圖2- 6拉伸試片製備 28 圖2- 7微拉力試驗機示意圖 29 圖2- 8通電試片製作過程 30 圖2- 9電極焊錫接合過程 32 圖2- 10通電及連續觀察設備 33 圖2- 11量測溫度示意圖 35 圖3- 1拉伸曲線 (a)尚未通電(As-Prepared) (b)通電五天 (c)通電十天 (d)通電十五天 37 圖3- 2最大拉伸強度與通電時間關係曲線 38 圖3- 3拉伸破斷面 (a)未通電 (b)未通電試片放大圖 (c)通電5天 (d)通電5天試片放大圖 40 圖3- 4拉伸破斷側視圖 (a)未通電 (b)未通電試片放大圖 (c)通電5天 (d)通電5天試片放大圖 42 圖3- 5觀察區域示意圖(x為觀察位置) 45 圖3- 6通電前的微觀組織 46 圖3- 7通電後的微觀組織(Current Density:2.5 × 103 A/cm2) 通電時間 (a)18小時 (b)83小時55分 (c)99小時30分 (d)123小時30分 47 圖3- 8觀察區域示意圖(x為觀察位置) 49 圖3- 9通電前的微觀組織 50 圖3- 10通電後的微觀組織(Current Density:5.0 × 103 A/cm2) 通電時間(a)19小時 (b) 39小時20分 (c)56小時50分 (d)122小時30分 51 圖3- 11觀察區域示意圖(x為觀察位置) 52 圖3- 12通電前的微觀組織 53 圖3- 13通電後的微觀組織(Current Density:1.0 × 104 A/cm2) (a)通電16小時20分 (b)停止通電7小時後 54 圖3- 14通電後的微觀組織(Current Density:1.0 × 104 A/cm2,通電總時數:33小時20分) (a)通電17小時 (b)停止通電5小時後 55 圖3- 15通電後的微觀組織(Current Density:1.0 × 104 A/cm2,通電總時數:51小時50分)(a)通電18小時30分(b)停止通電1小時15分後 57 圖3- 16通電後的微觀組織(Current Density:1.0 × 104 A/cm2,通電總時數:51小時50分) (a)停止通電2小時 (b)試片放大圖 58 圖3- 17通電後的微觀組織(Current Density:1.0 × 104 A/cm2,通電總時數:118小時) (a)通電66小時10分 (b)停止通電5小時30分後 59 圖3- 18試片通電前後的微觀組織(Current Density:5.0 × 103 A/cm2,”+”為EDS Analysis所量測的位置標示) (a)通電前 (b)通電60小時 61 圖3- 19通電前後的EDS Mapping圖(Current Density:5.0 × 103 A/cm2) (a)通電前Sn的分佈 (b)通電60小時後Sn的分佈 (c)通電前Pb的分佈 (d)通電60小時後Pb的分佈 62 圖3- 20試片通電前後的微觀組織(Current Density:7.5 × 103 A/cm2,”+”為EDS Analysis所量測的位置標示) (a)通電前 (b)通電60小時 64 圖3- 21通電前後的EDS Mapping圖(Current Density:7.5 × 103 A/cm2) (a)通電前Sn的分佈 (b)通電60小時後Sn的分佈 (c)通電前Pb的分佈 (d)通電60小時後Pb的分佈 65 圖3- 22停止通電後10天的微觀組織(Current Density:7.5 × 103 A/cm2) 67 圖3- 23試片通電前後的微觀組織(Current Density:1.0 × 104 A/cm2,”+”為EDS Analysis所量測的位置標示) (a)通電前 (b)通電60小時 69 圖3- 24停止通電後28天的微觀組織(Current Density:1.0 × 104 A/cm2) 71 圖3- 25試片通電前後的表面形態(Current Density:1.0 × 104 A/cm2) (a)通電前 (b)通電60小時 72 圖3- 26錫濃度與通電時間關係曲線圖 73 圖3- 27極限錫過飽和濃度值與通電時間關係圖 75 圖3- 28極限過飽和濃度及其相對應之臨界時間與電流密度關係圖 76 圖3- 29錫固溶速率與通電時間間隔關係圖 77 圖3- 30 Sn-Pb相圖31 78 圖3- 31錫固溶於富鉛基地相的Arrhenium plot 80 圖3- 32纖維狀錫的成長機制 82 圖3- 33時效熱處理前後的微觀組織(39 ℃) (a)熱處理前 (b)熱處理60小時後 83 圖3- 34時效熱處理前後的微觀組織(51 ℃) (a)熱處理前 (b)熱處理60小時後 84

    1. M. Abtew, G. Selvaduray, "Lead-Free Solders in Microelectronics", Materials Science & Engineering R-Reports, Vol. 27, 2000, pp. 95~141.
    2. J. Glazer, "Metallurgy of Low-Temperature Pb-Free Solders For Electronic Assembly", International Materials Reviews, Vol. 40, 1995, pp. 65~93.
    3. M. McCormack, I. Artaki, S. Jin, A. M. Jackson, D. M. Machusak, G. W. Kammlott, D. W. Finley, "Wave Soldering with a Low Melting Point Bi-Sn Alloy: Effects of Soldering Temperatures and Circuit Board Finishes", Journal of Electronic Materials, Vol. 25, 1996, pp. 1128~1131.
    4. M. E. Loomans, S. Vaynman, G. Ghosh, M. E. Fine, "Investigation of Multicomponent Lead-Free Solders", Journal of Electronic Materials, Vol. 23, 1994, pp. 741~746.
    5. M. McCormack, S. H. Jin, "Progress in The Design of New Lead-Free Solder Alloys", Jom-Journal of the Minerals Metals & Materials Society, Vol. 45, 1993, pp. 36~40.
    6. P. T. Vianco, F. M. Hosking, J. A. Rejent, "Wettibility of Metallic-Glass Alloys by 2 Tin-Based Soders", Welding Journal, Vol. 73, 1994, pp. S153~S163.
    7. M. McCormack, S. Jin, H. S. Chen, D. A. Machusak, "New Lead-Free, Sn-Zn-In Solder Alloys", Journal of Electronic Materials, Vol. 23, 1994, pp. 687~690.
    8. W. Dauksher, J. Lau, "A Finite-Element-Based Solder-Joint Fatigue-Life Prediction Methodology for Sn-Ag-Cu Ball-Grid-Array Packages", Ieee Transactions on Device and Materials Reliability, Vol. 9, 2009, pp. 231~236.
    9. Y. W. Shi, J. P. Liu, Z. D. Xia, Y. P. Lei, F. Guo, X. Y. Li, "Study on Creep Characterization of Nano-Sized Ag Particle-Reinforced Sn-Pb Composte Solder Joints", Journal of Materials Science-Materials in Electronics, Vol. 21, 2010, pp. 256~261.
    10. F. Ren, J. W. Nah, K. N. Tu, B. S. Xiong, L. H. Xu, J. H. L. Pang, "Electromigration Induced Ductile-to-Brittle Transition in Lead-Free Solder Joints", Applied Physics Letters, Vol. 89, 2006, pp. 141914~141914-141913.
    11. X. R. Zhang, Z. F. Yuan, H. X. Zhao, L. K. Zang, J. Q. Li, "Wetting Behavior and Interfacial Characteristic of Sn-Ag-Cu Solder Alloy on Cu Substrate", Chinese Science Bulletin, Vol. 55, 2010, pp. 797~801.
    12. H. J. Lin, J. S. Lin, T. H. Chuang, "Electromigration of Sn-3Ag-0.5Cu and Sn-3Ag-0.5Cu-0.5Ce-0.2Zn Solder Joints With Au/Ni(P)/Cu and Ag/Cu Pads", Journal of Alloys and Compounds, Vol. 487, 2009, pp. 458~465.
    13. G. A. Rinne, "Issues in Accelerated Electromigration of Solder Bumps", Microelectronics Reliability, Vol. 43, 2003, pp. 1975~1980.
    14. M. Tammaro, "Investigation of The Temperature Dependence in Black's Equation Using Microscopic Electromigration Modeling", Journal of Applied Physics, Vol. 86, 1999, pp. 3612~3615.
    15. D. Gupta, J. M. Oberschmidt, "Diffusion Processes in Lead Based Solders Used in Microelectronic Industry", Presented at Proceedings of Design and Reliability of Solders and Solder Interconnections Symposium, 59-64
    16. J. Niehof, H. C. de-Graaff, A. J. Mouthaan, J. F. Verwey, "An Empirical Model for Early Resistance Changes Due to Electromigration", Solid-State Electronics, Vol. 38, 1995, pp. 1817~1827.
    17. J. Niehof, H. C. de-Graaff, A. J. Mouthaan, J. F. Verwey, "Critical Review of 1-Particle Models in Electromigration Resistance Change Modeling", Presented at Materials Reliability in Microelectronics IV.
    18. T. Mouthaan, V. Petrescu, W. Schoenmaker, F. Groot, S. Angelescu, J. Niehof, "Early Resistance Change Modelling in Electromigration", Proceedings of 25th European Solid State Device Research Conference.
    19. P. Shewmon, Diffusion in Solid, The Minerals, Metals & Materials Society, USA, 1989, Chapter 7.
    20. H. B. Huntington, Diffusion in Solids : Recent Developments, edited by A. S. Nowick and J. J. Burton, Academic Press, New York, 1975, pp. 303~352.
    21. C. Y. Liu, C. Chen, K. N. Tu, "Electromigration in Sn-Pb Solder Strips as A Function of Alloy Composition", Journal of Applied Physics, Vol. 88, 2000, pp. 5703~5709.
    22. J. A. Nucci, A. Straub, E. Bischoff, E. Arzt, C. A. Volkert, "Growth of Electromigration-Induced Hillocks in Al Interconnects", Journal of Materials Research, Vol. 17, 2002, pp. 2727~2735.
    23. J. Cheng, S. Chen, P. T. Vianco, J. C. M. Li, "Quantitative Analysis for Hillocks Grown From Electroplated Sn Film", Journal of Applied Physics, Vol. 107, 2010, pp. 074902~074902-4.
    24. Y. Yao, L. M. Keer, M. E. Fine, "Electromigration effect on pancake type void propagation near the interface of bulk solder and intermetallic compound", Journal of Applied Physics, Vol. 105, 2009.
    25. K. N. Tu, "Irreversible Processes of Spontaneous Whisker Growth in Bimetallic Cu-Sn Thin-Film Reactions", Physical Review B, Vol. 49, 1994, pp. 2030~2034.
    26. I. A. Blech, "Electromigration in Thin Aluminum Films on Titanium Nitride ", Journal of Applied Physics, Vol. 47, 1976, pp. 1203~1208.
    27. M. A. Korhonen, P. Borgesen, K. N. Tu, C. Y. Li, "Stress Evolution Due to Electromigration in Confined Metal Lines", Journal of Applied Physics, Vol. 73, 1993, pp. 3790~3799.
    28. K. N. Tu, C. C. Yeh, C. Y. Liu, C. Chen, "Effect of Current Crowding on Vacancy Diffusion and Void Formation in Electromigration", Journal of Applied Physics, Vol. 76, 2000, pp. 988~990.
    29. C. Y. Liu, C. Chen, K. N. Tu, "Electromigration of Sn-Pb Solder Strips as a Function of Alloy Composition", Journal of Applied Physics, Vol. 88, 2000, pp. 5703~5709.
    30. C. Y. Liu, C. Chen, C. N. Liao, K. N. Tu, "Microstructure- Electromigration Correlateion in A Thin Stripe of Eutectic SnPb Solder Stressesd Between Cu Electrodes", Journal of Applied Physics, Vol. 75, 1999, pp. 58.
    31. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metal Park, Ohio, USA, Vol. 2, 1986, pp. 1848.
    32. D. A. Porter, K. E. Easterling, Phase Transformations in Metals and Alloys, Second Edition, Taylor & Francis, 2004, pp. 71~75.
    33. B. Y. Wu, H. W. Zhong, Y. C. Chan, M. O. Alam, "Degradation of Sn37Pb and Sn3.5Ag0.5Cu Solder Joints Between Au/Ni (P)/Cu Pads Stressed With Moderate Current Density", Journal of Materials Science-Materials in Electronics, Vol. 17, 2006, pp. 943~950.
    34. B. T. Lampe, "Room-Temperature Aging Properties of Some Solder Alloys", Welding Journal, Vol. 55, 1976, pp. S330~S340.
    35. C. M. Chuang, T. S. Lui, L. H. Chen, "Effect of Aluminum Addition on Tensile Properties of Naturally Aged Sn-9Zn Eutectic Solder", Journal of Materials Science, Vol. 37, 2002, pp. 191~195.
    36. D. H. Xiao, K. H. Chen, W. H. Luo, "Effect of Solution Heat Treatment on Microstructure and Properties of AA7085 Aluminum Alloys", Rare Metal Materials and Engineering, Vol. 39, 2010, pp. 494~497.
    37. B. H. Zhu, B. Q. Xiong, Y. A. Zhang, Y. M. Xiong, "Effect of Heat Treatments on Properties of High Purity Al-Cu-Mg-Ag Alloy with Trace Mn and Zr", Rare Metal Materials and Engineering, Vol. 39, 2010, pp. 144~148.
    38. A. M. Gusak, K. N. Tu, T. V. Zaporozhets, "Diffusion-Driven Evolution of Morphology in Metallic Joints and Solder Balls at Electromigration, Thermomigration and Reflow", Metallofizika I Noveishie Tekhnologii, Vol. 31, 2009, pp. 1~22.
    39. A. T. Wu, A. M. Gusak, K. N. Tu, C. R. Kao, "Electromigration-induced grain rotation in anisotropic conducting beta tin", Applied Physics Letters, Vol. 86, 2005, pp. 241902~241902-3.
    40. A. T. Wua, Y. C. Hsieh, "Direct Observation and Kinetic Analysis of Grain Rotation in Anisotropic Tin Under Electromigration", Applied Physics Letters, Vol. 92, 2008, pp. 121921~121921-3.

    下載圖示 校內:2011-07-28公開
    校外:2011-07-28公開
    QR CODE