| 研究生: |
施宣燁 Shih, Hsuan-Yeh |
|---|---|
| 論文名稱: |
以淺水波方程式選擇機器學習模型特徵進行河川水位預報 Selecting Machine Learning Model Features Using Shallow Water Equation for River Stage Forecasting |
| 指導教授: |
張駿暉
Jang, Jiun-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 水位預測 、長短期記憶 、梯度提升回歸 、淺水波方程式 |
| 外文關鍵詞: | water level prediction, long short-term memory, gradient boosting regression, shallow water equation |
| 相關次數: | 點閱:69 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究由質量與動量守恆原理進行數學推導,篩選具有物理意義之特徵輸入機器學習模型進行訓練,藉以提高機器學習模型之精度與可解釋性。首先推導出與水位變化有關聯之特徵,以水位、雨量及潮位資料為基礎,結合淺水波方程式,延伸出各種特徵。原始水位模型僅輸入水位、雨量及潮位,並以未來的水位值作為輸出目標,由於原始水位模型直接輸出未來一至六小時的水位值,因此分別訓練六個模型直接預測;原始梯度模型則預測下一個小時水位之梯度,即以水位變化量作為輸出目標,並以此為基礎繼續預測下一個小時水位。以這兩種模型為基礎,本研究增加差分項作為輸入特徵進行比較,延伸出差分水位模型以及差分梯度模型。四種模型均採用梯度提升回歸(gradient boosting regression, GBR)以及長短期記憶(long short-term memory, LSTM)兩種機器學習方法。根據研究結果,運用梯度提升回歸之梯度模型在加入差分特徵後的改善效果最佳。而對於上游的水位站,以梯度模型的表現較佳;針對下游的水位站,則以原始模型的表現效果較好。
Recently, extreme flood events are becoming more frequent due to climate change. In order to reduce economic loss, building a flood warning system is one of the solutions. Based on two machine learning methods called gradient boosting regression (GBR) and long short-term memory (LSTM), additional difference terms were added as input features through the derived results of the shallow water equation in this study. Depending on the output, the models were classified as difference water level model and difference gradient model. For comparison, the study established two models which used only take tide, rainfall, and water level data as input features, namely the original water level models and original gradient models which. The result indicates that the gradient models have better performance in upstream stations, while the water level models have better behavior in downstream stations. After adding difference terms, the GBR gradient models have significant improvements.
Arnell, N. W., & Lloyd-Hughes, B. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios Climatic change (Vol. 122, pp. 127-140).(2014)
Atashi, V., Gorji, H. T., Shahabi, S. M., Kardan, R., & Lim, Y. H. Water Level Forecasting Using Deep Learning Time-Series Analysis: A Case Study of Red River of the North. Water, 14(12), 1971. (2022).
Brody, S. D., & Highfield, W. E. Open space protection and flood mitigation: A national study Land Use Policy (Vol. 32, pp. 89-95).(2013)
Campolo, M., Soldati, A., & Andreussi, P. Artificial neural network approach to flood forecasting in the River Arno. Hydrological Sciences Journal, 48(3), 381-398. A (2003)
Cuny, F. C. Living with floods: alternatives for riverine flood mitigation Land use policy (Vol. 8, pp. 331-342).(1991)
Friedman, J. H. Greedy function approximation: a gradient boosting machine Annals of statistics (pp. 1189-1232).(2001)
Gholamy, A., Kreinovich, V., & Kosheleva, O. Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. (2018).
Guimarães, L. N. F., & Shiguemori, E. H. Hybrid adaptive computational intelligence-based multisensor data fusion applied to real-time UAV autonomous navigation. Inteligencia Artificial, 22(63), 162-195. (2019).
Hochreiter, S., & Schmidhuber, J. Long short-term memory Neural computation (Vol. 9, pp. 1735-1780).(1997)
Hsu, M.-H., Fu, J.-C., & Liu, W.-C. Flood routing with real-time stage correction method for flash flood forecasting in the Tanshui River, Taiwan. Journal of Hydrology, 283(1-4), 267-280. (2003).
Jang, J.-H., Lee, K.-F., & Fu, J.-C. Improving River-Stage Forecasting Using Hybrid Models Based on the Combination of Multiple Additive Regression Trees and Runge–Kutta Schemes Water Resources Management (Vol. 36, pp. 1123-1140).(2022)
Kim, D., Lee, J., Kim, J., Lee, M., Wang, W., & Kim, H. S. Comparative analysis of long short-term memory and storage function model for flood water level forecasting of Bokha stream in NamHan River, Korea. Journal of Hydrology, 606, 127415. (2022).
Kousky, C., & Walls, M. Floodplain conservation as a flood mitigation strategy: Examining costs and benefits Ecological Economics (Vol. 104, pp. 119-128).(2014)
Kunverji, K., Shah, K., & Shah, N. A flood prediction system developed using various machine learning algorithms Proceedings of the 4th International Conference on Advances in Science & Technology (ICAST2021).(2021)
Liong, S.-Y., Lim, W.-H., & Paudyal, G. N. River stage forecasting in Bangladesh: neural network approach. Journal of computing in civil engineering, 14(1), 1-8. (2000).
Liu, S., Lei, P., & Koji, K. LSTM based hybrid method for basin water level prediction by using precipitation data Journal of Advanced Simulation in Science and Engineering (Vol. 8, pp. 40-52).(2021)
Liu, Y., Wang, H., Feng, W., & Huang, H. Short term real-time rolling forecast of urban river water levels based on lstm: a case study in fuzhou city, China International Journal of Environmental Research and Public Health (Vol. 18, pp. 9287).(2021)
Looper, J. P., & Vieux, B. E. An assessment of distributed flash flood forecasting accuracy using radar and rain gauge input for a physics-based distributed hydrologic model. Journal of Hydrology, 412, 114-132. (2012).
McCulloch, W. S., & Pitts, W. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5, 115-133. (1943).
Meehl, G. A., Arblaster, J. M., & Tebaldi, C. Understanding future patterns of increased precipitation intensity in climate model simulations Geophysical Research Letters (Vol. 32).(2005)
Molnar, P. Climate change, flooding in arid environments, and erosion rates Geology (Vol. 29, pp. 1071-1074).(2001)
Montzka, S. A., Dlugokencky, E. J., & Butler, J. H. Non-CO2 greenhouse gases and climate change Nature (Vol. 476, pp. 43-50).(2011)
Myhrvold, N. P., & Caldeira, K. Greenhouse gases, climate change and the transition from coal to low-carbon electricity Environmental Research Letters (Vol. 7, pp. 014019).(2012)
Noor, F., Haq, S., Rakib, M., Ahmed, T., Jamal, Z., Siam, Z. S., Rahman, R. M. Water Level Forecasting Using Spatiotemporal Attention-Based Long Short-Term Memory Network. Water, 14(4), 612. (2022).
Perumal, M., Moramarco, T., Barbetta, S., Melone, F., & Sahoo, B. Real-time flood stage forecasting by Variable Parameter Muskingum Stage hydrograph routing method. Hydrology Research, 42(2-3), 150-161. (2011).
Power, M. E., Dietrich, W. E., & Finlay, J. C. Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environmental management, 20, 887-895. (1996).
Syed, Z. H., Choi, G., & Byeon, S. A numerical approach to predict water levels in ungauged regions—Case study of the meghna river estuary, Bangladesh Water (Vol. 10, pp. 110).(2018)
Won, Y.-M., Lee, J.-H., Moon, H.-T., & Moon, Y.-I. Development and Application of an Urban Flood Forecasting and Warning Process to Reduce Urban Flood Damage: A Case Study of Dorim River Basin, Seoul Water (Vol. 14, pp. 187).(2022)
Wu, Z., Zhou, Y., & Wang, H. Real-time prediction of the water accumulation process of urban stormy accumulation points based on deep learning IEEE Access (Vol. 8, pp. 151938-151951).(2020)
Xu, Z., Huang, G., Weinberger, K. Q., & Zheng, A. X. Gradient boosted feature selection Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 522-531).(2014)
Zeiler, M. D. Adadelta: an adaptive learning rate method arXiv preprint arXiv:1212.5701.(2012)
福丸大智, 赤松良久, 新谷哲也, & 藤井晴香. 深層学習を用いた 6 時間先の河川水位予測実現に向けた基礎的検討. 自然災害研究協議会中国地区部会研究論文集= Chugoku Regional Division Research of Natural Disaster Research Council(8), 17-20. (2022).
箱石健太, 荒木健, & 一言正之. スタッキングの適用による河川水位の時系列予測. AI・データサイエンス論文集, 1(J1), 453-458. (2020).
蔡浩宇. 深層学習に基づく LSTM を用いた洪水水位予測. 大学院研究年報 理工学研究科編, 51. (2021).