簡易檢索 / 詳目顯示

研究生: 鄭宇翔
Cheng, Yu-Hsiang
論文名稱: 抗震耦合結構牆之近斷層抗震設計
Seismic design of coupled walls under near-fault earthquakes
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 231
中文關鍵詞: 近斷層地震耦合結構牆性能化設計法側向力分佈形式
外文關鍵詞: Near-fault earthquake, Coupled structural walls, Performance-based design, Lateral load patterns
相關次數: 點閱:216下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近斷層地震在近年來成為地震工程領域內熱門的研究主題,其原因為在同一次地震中,近斷層區域得到的紀錄與遠場區域得到的紀錄相比,有許多顯著的特徵差異,尤其近斷層地震具有高速度脈衝,可能使建築物產生非預期的破壞。耦合結構牆為一種由兩座以上之結構牆,透過連接梁連結而成之結構系統,在地震頻繁的區域,耦合結構牆常用來增加系統之側向勁度,提升整體的消能容量。現今耦合結構牆之設計方法只適用於一般地震作用下,並未考慮在近斷層地震下之結構行為,本研究以盧威廷(2013)提出之耦合結構牆的性能化設計法為基礎,結合耦合牆系統於近域地震下之設計參數,並提出考慮近斷層效應之側向力分佈形式,發展出一套耦合結構牆之近斷層抗震設計方法,並使用有限元素分析軟體分析結構之行為。本文使用規範強度設計法、盧威廷(2013)性能化設計法以及本研究提出之近斷層性能化設計法,分別建立具有兩種樓層高度(10層樓與30層樓)與兩種耦合率(35%與50%)之耦合結構牆,進行非線性側推分析,與不同層級地震下的非線性動力分析,並以系統層間位移、連接梁與結構牆轉角等結構參數,評估各系統之損壞。結果顯示,本文發展的耦合牆系統,於非線性側推分析下,可以展現理想的降伏機制,發揮良好的抗震消能行為,於近斷層地震作用下,與其他設計法設計之耦合牆系統相比,可以有效降低結構反應的大小,並防止結構牆在中高樓層有相對較大的轉角發生。

    Near-fault ground motions, which have caused much more damages than far-field earthquakes in recent major earthquakes, are characterized by a short-duration impulsive motion that exposes the structure to high input energy at the beginning of the record. A coupled wall structure consists of two or more structural walls linked by coupling beams. It is able to provide efficient lateral strength and stiffness, which effectively reduces the drift response of buildings under earthquakes. The current design method of coupled structural walls can only applied to the far-field earthquake. It does not consider the structural behavior under the near-fault earthquake. Based on the performance-based design method of coupled structural walls proposed by Wei-Ting Lu (2013), this study combines the design parameters of coupled structural walls under the near-fault earthquake and proposed lateral load patterns considering the near-fault effect, a near-fault performance-based design method is developed. In the study, twelve coupled structural walls are designed with two height, two coupling ratio and three design methods. Their computational models are also built and analyzed using nonlinear static procedure and nonlinear dynamic procedure. According to the analysis results, the coupled structural walls proposed in the study are able to exhibit satisfactory structural yielding mechanisms and present a good energy dissipation activity. Compare with other design methods mentioned in this study, the near-fault performance-based design methods can reduce the deformation of the structure effectively, and prevent the structural wall from a larger rotation in the high floor.

    摘要 II 誌謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XVII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法與步驟 1 1.4 論文架構 2 第二章 文獻回顧 3 2.1 近斷層地震 3 2.1-1 近斷層強地震動的集中性 3 2.1-2 近斷層的速度大脈衝 4 2.1-3 上盤效應 5 2.2 耦合結構牆 6 2.2-1 耦合率 9 2.2-2 連接梁 10 2.3 耦合結構牆性能化塑性設計法 11 2.3-1 側向力分佈形式 13 2.3-2 能量平衡概念設計基底剪力 14 2.3-3 構件設計強度 17 2.4 近斷層設計反應譜 23 2.5 側向力分佈形式 24 第三章 耦合結構牆設計方法 26 3.1 系統原型 26 3.2 耐震參數 27 3.3 等值側向力法 28 3.4 模態分析法 28 3.5 連接梁設計 37 3.6 結構牆設計 41 3.7 有限元素模型 47 3.7-1 模型建立 47 3.7-2 材料性質 48 第四章 近斷層性能化塑性設計法 51 4.1 耦合結構牆性能化塑性設計法 51 4.2 近斷層性能化塑性設計法 54 4.2-1 近斷層設計反應譜 54 4.2-2 近斷層側向力分佈形式 59 4.2-3 韌性折減係數 68 4.2-4 考慮近斷層之構件設計強度 70 4.3 耦合結構牆之材料用量比較 75 4.4 耦合結構牆之受力反應 76 4.4-1 耦合率曲線 76 4.4-2 側推曲線 78 4.4-3 非線性雙向反覆加載分析 80 第五章 耦合結構牆系統動態歷時分析 83 5.1 地震歷時資料與分類 83 5.2 規範評估 88 5.3 層間位移 89 5.3-1 遠域地震作用 89 5.3-2 近域地震作用 99 5.3-3 遠域與近域地震分類條件比較 109 5.4 連接梁轉角 113 5.4-1 遠域地震作用 113 5.4-2 近域地震作用 123 5.4-3 遠域與近域地震分類條件比較 133 5.5 結構牆轉角 136 5.5-1 遠域地震作用 136 5.5-2 近域地震作用 146 5.5-3 遠域與近域地震分類條件比較 156 5.6 殘留位移 159 5.6-1 遠域地震作用 159 5.6-2 近域地震作用 161 5.6-3 遠域與近域地震分類條件比較 163 5.7 結構系統初始週期與結束週期 167 5.7-1 遠域地震作用 167 5.7-2 近域地震作用 177 5.7-3 遠域與近域地震分類條件比較 186 第六章 結論與建議 193 參考文獻 197 附錄A規範設計法 203 A.1等值側向力法 203 A.2系統設計 206 A.3連接梁設計 208 A.3-1需求剪力與設計剪力 208 A.3-2位移檢核 209 A.4結構牆設計 210 A.4-1剪力鋼筋設計 210 A.4-2需求彎矩與設計彎矩 211 A.4-3撓曲鋼筋設計 212 附錄B性能化塑性設計法 214 B.1側向力分佈形式 214 B.2能量平衡概念設計基底剪力 216 B.3構件設計強度 217 附錄C近斷層設計反應譜計算流程 220 附錄D地震紀錄之加速度反應譜與擬速度反應譜 222

    Alavi, B., and Krawinkler H. “Consideration of near-fault ground motion effects in seismic design. ” Proceedings of the 12th World Conference on Earthquake Engineering, 2000.
    ASCE/SEI 7-10, “Minimum Design Loads for Buildings and Other Structures. ” American Society of Civil Engineers, 2010.
    ASCE/SEI 41-13,“Seismic Evaluation and Retrofit of Existing Buildings. ” American Society of Civil Engineers, 2014.
    ANSI/AISC 341-16, “Seismic Provisions for Structural Steel Buildings. ” American Institute of Steel Construction, 2016.
    Bray, J. D., and Rodriguez-Marek, A. “Characterization of forward-directivity ground motions in the near-fault region. ” Soil dynamics and earthquake engineering, 24(11), 815-828, 2004.
    Bommer, J. J., and Acevedo, A. B. “The use of real earthquake accelerograms as input to dynamic analysis. ” Journal of Earthquake Engineering, 8(spec01), 43-91, 2004.
    Chao, S. H., Goel, S. C., and Lee, S. S. “A seismic design lateral force distribution based on inelastic state of structures. ” Earthquake Spectra, 23(3), 547-569, 2007.
    El-Tawil, S., Harries, K. A., Fortney, P. J., Shahrooz, B. M., & Kurama, Y. “Seismic design of hybrid coupled wall systems: state of the art. ” Journal of structural engineering, 136(7), 755-769, 2010
    FEMA-356. “NEHRP Guidelines for the Seismic Rehabilitation of Buildings.” FEMA-356, Applied Technology Council, Redwood City, California, 2000.
    Gong, B., and Shahrooz, B. M. “Concrete-steel composite coupling beams. I: Component testing. ” Journal of Structural Engineering, 127(6), 625-631, 2001.
    Gong, B., and Shahrooz, B. M. “Concrete-steel composite coupling beams. II: Subassembly testing and design verification. ” Journal of Structural Engineering, 127(6), 632-638, 2001.
    Goel, S. C., Liao, W. C., Reza Bayat, M., and Chao, S. H. “Performance‐based plastic design (PBPD) method for earthquake‐resistant structures: an overview. ” The structural design of tall and special buildings, 19(1‐2), 115-137, 2010.
    Gillie, J. L., Rodriguez-Marek, A., and McDaniel, C. “Strength reduction factors for near-fault forward-directivity ground motions. ” Engineering Structures, 32(1), 273-285, 2010.
    Harries, K. A., Mitchell, D., Cook, W. D., and Redwood, R. G. “Seismic response of steel beams coupling concrete walls. ” Journal of Structural Engineering, 119(12), 3611-3629, 1993.
    Harries, K. A., Moulton, J. D. L., and Clemson, R. L. “Parametric study of coupled wall behavior—implications for the design of coupling beams. ” Journal of Structural Engineering, 130(3), 480-488, 2004.
    Harries, K. A., and McNeice, D. S. “Performance‐based design of high‐rise coupled wall systems. ” The Structural Design of Tall and Special Buildings, 15(3), 289-306, 2006.
    Huang, Y. N., Whittaker, A. S., and Luco, N. “Maximum spectral demands in the near-fault region. ” Earthquake Spectra, 24(1), 319-341, 2008.
    Hajirasouliha, I., amd Moghaddam, H. “New lateral force distribution for seismic design of structures. ” Journal of structural engineering, 135(8), 906-915, 2009.
    Hung, C. C., El-Tawil, S. “Hybrid Rotating/Fixed-Crack Model for High Performance Fiber Reinforced Cementitious Composites. ” ACI Materials Journal. 107(6), 569-577, 2010.
    Hung, C. C., El-Tawil, S. “Seismic Behavior of a Coupled Wall System with HPFRC Materials in Critical Regions. ” ASCE Journal of Structural Engineering ASCE. 137(12), 1499-1507, 2011.
    Hung, C. C. “Modified Full Operator Hybrid Simulation Algorithm and its Application to the Seismic Response Simulation of a Composite Coupled Wall System. ” Journal of Earthquake Engineering. 16(6), 759-776, 2012.
    Hung, C. C., Su, Y. F. “On Modeling Coupling Beams Incorporating Strain-hardening Cement-based Composites.” Computers and Concrete. 12(4), 243-259, 2013.
    Hung, C. C., Su, Y. F., Yu, K. H. “Modeling the Shear Hysteretic Response for High Performance Fiber Reinforced Cementitious Composites.” Construction and Building Materials. 41, 37-48, 2013.
    Hung, C. C., Li, S. H. “Three-dimensional Model for Analysis of High Performance Fiber Reinforced Cement-based Composites. ” Composites Part B: Engineering. 45, 1441-1447, 2013.
    Hung, C. C., Yen, W. M. “Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. ” Procedia Engineering. 79, 506-512, 2014.
    Hung, C. C., Lu, W. T. “Towards achieving the desired seismic performance for hybrid coupled structural walls.” Earthquakes and Structures. 9(6), 1251-1272, Nov, 2015.
    Hung, C. C., Chueh, C. Y. “Cyclic Behavior of UHPFRC Flexural Members Reinforced with High-Strength Steel Rebar. ” Engineering Structures. 122, 108-120, 2016.
    Hung, C. C., Su, Y. F. “Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. ” Construction & Building Materials. 118, 194-203, 2016.
    Hung, C. C., Chen, Y. S. “Innovative ECC Jacketing for Retrofitting Shear-Deficient RC Members. ” Construction & Building Materials. 111, 408-418, 2016.
    Hung, C. C., Yen, W. M., Yu, K. H. “Vulnerability and Improvement of Reinforced ECC Flexural Members under Displacement Reversals: Experimental Investigation and Computational Analysis. ” Construction & Building Materials. 107, 287-298, March, 2016.
    Hung, C. C., Su, Y. F., Su, Y. M. “Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. ” Composites Part B: Engineering, 2017.
    Hung, C. C., Li, H., Chen, H. C. “High-strength Steel Reinforced Squat UHPFRC Shear Walls: Cyclic Behavior and Design Implications.” Engineering Structures. 141, 59-74, 2017.
    Hung, C. C., Lu, W. T. “A Performance-Based Design Method for Coupled Wall Structures. ” Journal of Earthquake Engineering. 21(4), 579-603, 2017.
    Hung, C. C., Lu, W. T. “Tall hybrid coupled structural walls: seismic behavior and design suggestions. ” International Journal of Civil Engineering, 2017.
    Hung, C. C., Su, Y. F., Hung, H. H. “Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. ” Cement and Concrete Composites 80, 200-209, 2017.
    Liao, W. C. “Performance-based plastic design of earthquake resistant reinforced concrete moment frames. ” Diss. University of Michigan, 2010.
    Mavroeidis, G. P., and Papageorgiou, A. S. “A Mathematical Representation of Near-Fault Ground Motions, ” Bulletin of the seismological society of America 93.3, 1099-1131, 2003.
    Mortezaei, A., and Ronagh, H. R. “Plastic hinge length of reinforced concrete columns subjected to both far‐fault and near‐fault ground motions having forward directivity. ” The Structural Design of Tall and Special Buildings 22.12, 903-926, 2013.
    Paulay, T., and Priestley, M. N. “Seismic design of reinforced concrete and masonry buildings. ” , 1992.
    Paulay, T. “The displacement capacity of reinforced concrete coupled walls. ” Engineering Structures, 24(9), 1165-1175, 2002.
    Park, K. “Lateral load patterns for the conceptual seismic design of moment-resisting frame structures. ” University of Maryland, College Park, 2007.
    Somerville, P. G., and Graves, R. W. “Characterization of earthquake strong ground motion. ” In Landslide Tsunamis: Recent Findings and Research Directions. Birkhäuser Basel, 1811-1828, 2003.
    內政部,「建築物耐震設計規範及解說」,2011。
    古賢唯,「耦合結構牆受近斷層地震作用之行為」,國立中央大學土木工程研究所碩士論文,2016。
    洪崇展,曾柏庭,游文吉,黃忠良,「使用高性能纖維混凝土於耦合結構牆以提升地震行為表現之有效性」,結構工程. 26(4),3-16,2011。
    洪崇展,戴艾珍,顏誠皜,溫國威,張庭維,「新世代多功能性混凝土材料-高性能纖維混凝土」,土木水利. 44(1),33-51,2017/02。
    洪崇展,盧威廷,鄭宇翔,「耦合結構牆性能化抗震設計法」,結構工程. 32(1), 49-70,2017。
    洪崇展,盧威廷,「複合耦合結構牆抗震系統之設計與非線性側推分析」,結構工程. 29(3),40-58,2014。
    袁一凡,劉啟方,金 星,丁海平,「近斷層地震動的基本特徵」,地震工程與工程振動,2006。
    陳正誠,鄭敏元,Fikri R.,「混合式耦合剪力牆耐震系統之研發」,內政部建築研究所委託研究報告,2012。
    盧威廷,「耦合結構牆地震行為與性能化設計法」,國立中央大學土木工程研究所碩士論文,2013。
    錢 輝,董立偉,「近斷層地震動的特點及其對結構地震反應影響研究進展」, 2013。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE