簡易檢索 / 詳目顯示

研究生: 陳冠豪
Chen, Guan-Hao
論文名稱: 氣喘患者呼吸道內顆粒沉積之數值模擬
Numerical Simulation of Particle Deposition in Asthmatic Airway Models
指導教授: 黃啟鐘
Hwang, Chii-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 95
中文關鍵詞: 氣喘分岐管兩相流下呼吸道
外文關鍵詞: bifurcation, particles, asthmatic, two phase flow, airway
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來空氣中霾害的問題越來越嚴重,造成許多人產生呼吸系統上的疾病(如氣喘)。對於氣喘患者,為有效使用藥物噴劑,探討氣管內的流場與顆粒沉積現象則為重要且有意義之研究工作。此方面之研究可分為實驗、數值模擬及理論分析。本文使用計算流體力學方法來求解穩態三維不可壓縮層流納維爾史托克之方程式以探討顆粒在正常分歧管與氣喘患者的皺摺分岐管之沉積情形。首先,本研究使用Ansys Fluent 14.5來計算正常分岐管穩態層流之顆粒沉積率,並將其所得之解與相關文獻做比較。接著進行兩種氣喘患者皺褶分岐管模型中之穩態層流計算,探討呼吸道內顆粒沉積情形。除了上述顆粒沉積情形外,也瞭解二次流與渦流等物理現象,並且比較模擬氣喘患者與正常人分岐管之管流與顆粒沉積之差異。

    In the recent years, the air pollution becomes more and more worse, and many people have the respiratory diseases, such as asthma. Investigating of the flow phenomena and particle deposition in lower bifurcating airway is very important and helpful for the mechanical design on the drug deliver devices. The experiment, theoretical analysis and numerical simulation are included to study this problem. By using the computational fluid dynamic technique, the steady three-dimensional incompressible Navier-Stokes equations are solved to study the particle deposition in normal and asthmatic airway models. In this work, the commercial code Ansys Fluent 14.5 is used to study the air way flow and particle behaviors. To evaluate the accuracy a single, symmetric airway bifurcation model is adopt first, and the computed solutions are compared with those in relate papers. Furthermore a double bifurcation is introduced, and the behaviors of particle deposition are observed. In addition to the investigation of particle deposition, the present study also discusses on the secondary flow and vortex phenomena. Finally, the different behaviors of particles deposition and flow fields in the asthmatic and normal airway are compared.

    目 錄 中文摘要 I Abstract II 誌謝 V 圖目錄 VIII 符號說明 XIV 第一章 緒 論 1 1-1 前言 1 1-2 動機與目的 1 1-3 文獻回顧 2 1-4 研究內容 5 第二章 數 值 方 法 6 2-1 數值方法 6 2-1-1 統御方程式 6 2-1-2 SIMPLEC演算法 8 2-1-3 QUICK法 11 2-2 邊界條件 12 2-2-1 空氣的邊界條件 12 2-2-2 兩相耦合計算 12 2-2-3 顆粒運動方程式與阻力 13 2-2-4 顆粒分佈及顆粒總數 13 第三章 網 格 生 成 14 3-1 幾何外型建立 14 3-2 網格生成 15 3-3 網格獨立性之驗證 15 第四章 結 果 與 討 論 17 4-1 健康二級分岐管穩態兩相流驗證 17 4-2 正常與氣喘患者分岐管之穩態兩相流 19 4-2-1 二級分歧管穩態兩相流 19 4-2-2 三級分歧管穩態兩相流 21 第五章 結 論 與 建 議 24 5-1 結論 24 5-2 建議 25 參考文獻 26

    【1】 Weibel, E. R., “Morphometry of the Human Lung,” Academic Press, 1963, New York, Springer, Berlin.
    【2】 Calay, R. K., Kurujareon, J., Holdo, A. E. “Numerical Simulation of Respiratory Flow Pattern within Human Lung,”Respiratory Physiology & Neurobiology, Vol. 130, pp. 201-221, 2002.
    【3】 Zhao, Y., and Lieber, B. B., “Steady Inspiratory Flow in A Model Symmetric Bifurcation,” ASME Journal of Biomechanical Engineering, Vol. 116, 1994, pp. 488-496.
    【4】 Zhang, Z., Kleinstreuer, C. “Effect of particle inlet distributions on deposition in a triple bifurcation lung airway model.” Journal of Aerosol Medicine, Vol. 14.1, 2001, pp. 3-29.
    【5】 Choi, L. T., Tu, J. Y., Li, H. F., & Thien, F. “Flow and particle deposition patterns in a realistic human double bifurcation airway model.” Inhalation toxicology, Vol. 19.2, 2007, pp. 117-131.
    【6】 Lambert, R. K., Codd, S. L., Alley, M. R., and Pack, R. J., “Physical Determinats of Bronchial Mucosal Folding,” Journal of Applied Physiology, Vol. 77, pp. 1206-1216, 1994.
    【7】 Hrousis, C. A., Wiggs, B. R., Drazen, J. M., Parks, D. M., and Kamm, R. D.,“Mucosal Folding in Biologic Vessels,” Journal of Biomechanical Engineering, Vol. 124, pp. 334-342, 2002.
    【8】 Wiggs, B. R., Hrousis, C. A., Drazen, J. M., and Kamm, R. D.,“On The Mechanism of Mucosal Folding in Normal and Asthmatic Airways,” Journal of Applied Physiology, Vol. 83, pp. 1814-1821, 1997.
    【9】 Ertbruggen, C. V., Hirsch, C., and Paiva, M., “Anatomically Based Three – Dimensional Model of Airways to Simulate Flow and Particle Transport Using Computational Fluid Dynamics,”Journal of Applied Physiology, Vol. 98 , pp. 970-980, 2005.
    【10】 De Backer, J. W., Vos, W. G., Devolder, A., Verhulst, S. L., Germonpré, P., Wuyts, F. L., Parizel, P. M., and De Backer, W., “Computational Fluid Dynamics Can Detect Changes in Airway Resistance in Asthmatics after Acute Bronchodilation,”Journal of Biomechanics, Vol. 41, pp. 106-113, 2008.
    【11】 Donovan, G. M., and Tawhai, M. H., “A Simplified Model of Airway Narrowing Due to Bronchial Mucosal Folding,”Respiratory Physiology & Neurobiology, Vol. 171, pp. 144-150, 2010.
    【12】 Zhang, H., and Papadakis, G., “Computational Analysis of Flow Structure and Particle Deposition in A Single Asthmatic Human Airway Bifurcation,” Journal of Biomechanics, Vol. 43, pp. 2453-2459, 2010.
    【13】 Ansys Fluent User Guide, Ver.14.5, Ansys Inc.
    【14】 Van Doormaal, J. P., and Raithby, G. D., “Enhancements of the SIMPLE Methods for Predicting Incompressible Fluid Flows,” Num. Heat Mass Transfer, Vol. 7, pp. 147-163, 1984.
    【15】 蕭宏達、邱鈺雯、陳明志,“真實與人為分歧呼吸道內之流場與氣體交換現象分析 ” 第十五屆全國計算流體力學學術研討會.
    【16】 CATIA Documentation, DASSOUALT SYSTEM, 2002.
    【17】 Frink, N. T., Parikh, P., and Pirzadeh, S., “A Fast Upwind Solver for the Euler Equation on Three-Dimensional Unstructured Meshes, ”AIAA Paper 91-0102, 1991.
    【18】 Rossow, C.-C., “A Flux-Splitting Scheme for Compressible and Incompressible Flows,” J. Compt. Phys., Vol. 164, pp. 104-122, 2000.
    【19】 Wiggs, B. R., Moreno, R., Hogg, J. C., Hilliam, C., and Paré, P. D., “A Model of the Mechanics of Airway Narrowing,” Journal of Applied Physiology, Vol. 69, pp. 849-860, 1990.
    【20】 Rossow, C.-C.,“Extension of a Compressible Code Toward the Incompressible Limit,” AIAA Journal, Vol. 41, No. 12, pp. 2379-2386, 2003.
    【21】 Liu, C. Y., and Hwang , C. J., “New Strategy for Unstructured Mesh Generation,” AIAA Journal, vol. 39, No. 6, pp. 1078-1085, June 2001.
    【22】 Dean, W. R.,“Note on the Motion of Fluid in a Curved Pipe,” Philosophical Magazine 4 (Suppl.7), pp. 208-223, 1927.
    【23】 Liu, Y., So, R. M. C., and Zhang, C. H.,“Modeling the Bifurcating Flow in A Human Lung Airway,” Journal of Biomechanical, Vol. 35, pp. 465-473, 2002.
    【24】 Dean, W. R.,“Note on the Motion of Fluid in a Curved Pipe,” Philosophical Magazine 4 (Suppl.7), pp. 208-223, 1927.
    【25】 Zhang, Z., Kleinstreuer, C., &Kim,C.S., “Gas–solid two-phase flow in a triple bifurcation lung airway model” International Journal of Multiphase Flow 28 (2002) 1021–1046
    【26】 Zhang, Z., & Kleinstreuer, C., “Transient airflow structures and particle transport in a sequentially branching lung airway model” Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids Phys. Fluids 24, 061902 (2012)
    【27】 Ebrahim Ghahramani, Omid Abouali, Homayoon Emdad, Goodarz Ahmadi, “Numerical analysis of stochastic dispersion of micro-particles in turbulent flows in a realistic model of human nasal/upper airway. ” Journal of Aerosol Science 67 (2014): 188-206.
    【28】 張瑞麟 “氣喘患者下呼吸道內暫態流場之數值研究”國立成功大學航太所碩士論文
    【29】 Morsi, S. A., & Alexander, A. J. “An investigation of particle trajectories in two-phase flow systems. ” Journal of Fluid Mechanics, 55(02), 193-208. (1972)

    下載圖示 校內:2016-08-11公開
    校外:2016-08-11公開
    QR CODE