簡易檢索 / 詳目顯示

研究生: 邱宏彬
Chiu, Hung-Pin
論文名稱: 河道特性與魚類棲地利用之研究
Investigation on channel characteristics and fish habitat use
指導教授: 孫建平
Suen, Jian-Ping
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 多流路河道疏濬工程棲地特性棲地利用魚類恢復
外文關鍵詞: Multiple-channel section, Dredging engineering, Habitat characterization, Habitat use, Fish recovery
相關次數: 點閱:162下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 莫拉克颱風過後,疏濬工程的實施是優先保護人類及構造物的安全,疏濬結束後,因為人為和自然交互的影響,旗山溪內的部分河段逐漸形成多流路河道。相較於單流路河道,多流路河道內的棲地環境會較為多樣且魚類擁有較多的棲息環境選擇。本篇研究探討臺灣間爬岩鰍、南臺吻鰕虎、臺灣石[魚賓]、高身白甲魚等魚種在旗山溪多流路河道及單流路河道內的分佈。根據單因子變異數分析,大部分的環境因子在多流路河道和單流路河道間並未有顯著的差異,但多流路河道內的整體環境卻是較為多樣。多元尺度分析的結果也顯示魚類在多流路河道的點位會比單流路河道的點位分散。另外,根據主成份分析的結果,每種魚類都有其偏好的環境,且牠們在多流路河道內會擁有較多的棲息環境選擇。由此可知,多流路河道的存在會顯著影響魚類的存在,相反地,除了臺灣間爬岩鰍外,單流路河道內沒有發現任何一個環境因子會影響魚類的存在。本研究的結果發現,在疏濬實施後的河道,多流路河道比單流路河道較能改善魚類的棲地環境。從2009年的莫拉克颱風發生後至2014年,旗山溪的魚類群聚及環境都並未完全恢復,因此本研究找出了魚種於多流路河道內的合適棲息範圍,未來如有需要再次進行疏濬工程時,建議可採用多流路河道的方式以利魚類的恢復。

    After Typhoon Morakot, dredging engineering was conducted while taking the safety of humans and structures into consideration, but some stream reaches were formed in multiple-channel sections in Cishan Stream because of anthropogenic and natural influences. This study mainly explores the distribution of fish species (Hemimyzon formosanus, Rhinogobius nantaiensis, Acrossocheilus paradoxus, Onychostoma alticorpus) in both multiple- and single-channel sections in Cishan Stream. Some of the environments did not exhibit significant differences according to a one-way ANOVA comparing multiple- and single-channel sections, but certain areas of multiple-channel sections had more diverse habitats. Fish species was widely distributed by non-metric multidimensional scaling in multiple-channel sections as compared to those in single-channel sections. In addition, according to the principal component analysis, fish species has a preferred environment, and all of them have a wide choice of habitat environments in multiple-channel sections. This shows that the existence of multiple-channel sections could significantly affect the existence of the fish species under consideration in this study. However, no environmental factors were found to have an influence on fish species in single-channel sections, with the exception of H. formosanus. The results of this study found that multiple-channel sections after dredging activities could improve fish habitat environments as compared to single-channel sections. Because the fish assemblages and environments are not fully recovered in Cishan Stream from 2009 to 2014, this study identified suitable habitat environments for fish species in multiple-channel sections. In the future, if it is necessary to carry out dredging engineering again, it is recommended that multiple-channel section can be adopted to favor the recovery of fish.

    摘要....................................................I Extended Abstract......................................II 誌謝...................................................VI 目錄.................................................VIII 表目錄..................................................X 圖目錄.................................................XI 一、前言.................................................1 1.1研究計畫背景..........................................1 1.2研究計畫目的..........................................3 二、文獻回顧.............................................6 2.1單、多流路河道棲地環境、生物上之差異....................6 2.2辮狀河川的形成及對生物、棲地環境之影響..................9 2.3洪水、土石流對魚類群聚的影響..........................13 三、材料與方法..........................................16 3.1研究區域.............................................16 3.2魚類採樣.............................................23 3.3棲地調查.............................................28 3.4研究設計.............................................29 3.5資料分析.............................................34 四、結果................................................42 4.1各流路魚類豐度差異...................................42 4.2各流路棲地環境因子差異................................44 4.3魚類與整體棲地環境之關係..............................45 4.4魚類於棲地環境上的利用................................48 4.5莫拉克颱風前、後魚類豐度、環境差異.....................56 4.6工程上的應用.........................................66 五、討論................................................69 六、結論與建議..........................................78 6.1結論................................................78 6.2建議................................................79 七、參考文獻............................................80 附錄一、電魚同意公文.....................................92 附錄二、採樣紀錄表......................................94

    1.吳旻燕、許蓓怡、張世倉,清水溪臺灣特有種明潭吻鰕虎(Rhinogobius candidianus)攝食生態。台灣生物多樣性研究,12(4),367–380,2010。
    2.呂映昇,物理環境因子與魚類棲地喜好度之關係-多變量分析之應用。國立成功大學水利及海洋工程學系碩士論文,2009。
    3.呂映昇、孫建平,魚類於生命週期的不同階段棲地使用與物理棲地因子之量化關係。農業工程學報,56(1),40-51,2010a。
    4.呂映昇、孫建平,魚類棲地多樣性與空間層級系統之關係探討及其於溪流復育之應用。台灣生物多樣性研究,12(1),43-60,2010b。
    5.杜小倩,魚類適合度曲線通用性之研究。國立成功大學水利及海洋工程學系碩士論文,2012。
    6.汪靜明、鄧文楷、柯善勇、黃于玻,濁水溪上游栗栖河川生態研究及魚類保育計畫第一階段研究。台電工程月刊,603,34-49,1997。
    7.邱宏彬、孫建平,臺灣間爬岩鰍(Hemimyzon formosanus)和南台吻鰕虎(Rhinogobius nantaiensis)於旗山溪多流路河道分佈之探討。2014年動物行為暨生態學研討會,台中,49,2014。
    8.陳品翰,以颱風前後魚類棲地關係探討關鍵環境因子。國立成功大學水利及海洋工程學系碩士論文,2012。
    9.陳品翰、李沛沂、孫建平,楠梓仙溪颱風災害前後魚類棲地調查研究。100年度農業工程研討會,台北,531-541,2011。
    10.陳品翰、孫建平,以颱風前後魚類棲地關係探討關鍵環境因子,101年度農業工程研討會,台中,497-508,2012。
    11.陳順宇,多變量分析(四版)。華泰書局,pp. 5-13,2005.
    12.陳樹群,安軒霈,高屏溪流域河相特性及其演變之分析。流域地質與坡地災害研討會,台北,F-1-F-15,2010。
    13.游繁結,陳聯光,八八水災坡地災害探討。土木水利,37(1),32-40,2010。
    14.趙傳睿、邱宏彬、李沛沂、孫建平,以微棲地偏好度及適合度結合River2D模擬枯水期魚類棲地。100年度農業工程研討會,台北,1241-1254,2011。
    15.劉建榮、許少華、潘俊弘,卵礫石河床型態演變對物理性棲地影響之實例研究。中華水土保持學報,42(1),48-56,2011。
    16.龔琪嵐、齊士崢,楠梓仙溪的河階地形與地形演育。地理學報,38,47-62,2004。
    17.Amoros C., Bornette G., and Henry C.P., A vegetation-based method for ecological diagnosis of riverine wetlands. Environmental Management, 25(2), 211-227, 2000.
    18.Amoros C., The concept of habitat diversity between and within ecosystems applied to river side-arm restoration. Environmental management, 28(6), 805-817, 2001.
    19.Ayllón D., Almododóvar A., Nicola G.G., and Elvira B., Interactive effects of cover and hydraulics on brown trout habitat selection patterns. River Research and Applications, 25(8), 1051-1065, 2009.
    20.Bain M.B., Finn J.T., and Brooke H.E., A quantitative method for sampling riverine microhabitats by electrofishing. North American Journal of Fisheries Management, 5(3B), 489-493, 1985.
    21.Beauger A., Lair N., Reyes-Marchant P., and Peiry J.L., The distribution of macroinvertebrate assemblages in a reach of the River Allier (France), in relation to riverbed characteristics. Hydrobiologia, 571(1), 63-76, 2006.
    22.Beisel J.N., Usselgio-Polatera P., and Moreteau J.C., The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Hydrobiologia, 422/423, 163-171, 2000.
    23.Bertoldi W., Zanoni L., and Tubino M., Assessment of morphological changes induced by flow and flood pulses in a gravel bed braided river: the Tagliamento River (Italy). Geomorphology, 114(3), 348-360, 2010.
    24.Bornette G., and Amoros C., Aquatic vegetation and hydrology of a braided river floodplain. Journal of Vegetation Science, 2(4), 1991.
    25.Bornette G., Amoros C., and Collileux G., Role of seepage supply in aquatic vegetation dynamics in former river channels: prediction testing using a hydroelectric construction. Environmental Management, 18(2), 223-234, 1994.
    26.Boyero L., The quantification of local substrate heterogeneity in streams and its significance for macroinvertebrate assemblages. Hydrobiologia, 499, 1-3, 161-168, 2003.
    27.Brouder M.J., Effects of flooding on recruitment of roundtail chub, Gila robusta, in a southwestern river. The Southwestern Naturalist, 46(3), 302-310, 2001.
    28.Burge L.M., Testing links between river patterns and in-channel characteristics using MRPP and ANOVA. Geomorphology, 63(3), 115-130, 2004.
    29.Cairns Jr J., Lack of theoretical basis for predicting rate and pathways of recovery. Environmental Management, 14(5), 517-526, 1990.
    30.Carbiener R., Tremolières M., Mercier J.L., and Ortscheit A., Aquatic macrophyte communities as bioindicators of eutrophication in calcareous oligosaprobe stream waters (Upper Rhine plain, Alsace). Vegetatio, 86(1), 71-88, 1990.
    31.Castella E., Richardot-Coulet M., Roux C., and Richoux P., Aquatic marcoinvertebrate assemblages of two contrasting floodplains: the Rhône and Ain Rivers. Regulated Rivers, 6(4), 289-300, 1991.
    32.Chiu H.P., and Suen J.P., The importance of providing multiple-channel sections in dredging activities to improve fish habitat environments. Water, 8(2), 36, 2016.
    33.Chiu H.P., and Suen J.P., The distribution of fish assemblages between the multiple- and single-channel rivers in Cishan Stream in Taiwan. AOGS 2014 Conference, Sapporo, Japan, 2014.
    34.Copp G.H., and Peňáz M., Ecology of fish spawning and nursey zones in the flood plain, using a new sampling approach. Hydrobiologia, 169(2), 209-224, 1988.
    35.Cover M.R., de la Fuente J.A. & Resh V.H., Catastrophic disturbances in headwater streams: the long-term ecological effects of debris flows and debris floods in the Klamath Mountains, northern California. Canadian Journal of Fisheries and Aquatic Sciences, 67(10), 1596-1610, 2010.
    36.Dolloff C.A., Flebbe P.A., and Owen M.D., Fish habitat and fish populations in a southern Appalachian watershed before and after Hurricane Hugo. Transactions of the American Fisheries Society, 123(4), 668-678, 1994.
    37.Franssen N.R., Gilbert E.I., and Propst D.L., Effects of longitudinal and lateral stream channel complexity on native and non‐native fishes in an invaded desert stream. Freshwater Biology, 60(1), 16-30, 2015.
    38.Frissell C.A., Liss W.J., Warren C.E., and Hurley M.D., A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management, 10(2), 199-214, 1986.
    39.Fritz K.M., Tripe J.A., and Guy C.S., Recovery of three fish species to flood and seasonal drying in a tallgrass prairie stream. Transactions of the Kansas Academy of Science, 105(3), 209-218, 2002.
    40.Gido K.B., Propst D.L., and Molles Jr M.C., Spatial and temporal variation of fish communities in secondary channels of the San Juan River, New Mexico and Utah. Environmental Biology of Fishes, 49(4), 417-434, 1997.
    41.Glova G.J., Bonnett M.L., and Docherty C.R., Comparison of fish populations in riffles of three braided rivers of Canterbury, New Zealand. New Zealand Journal of Marine and Freshwater Research, 19(2), 157-165, 1985.
    42.Gray D., and Harding J.S., Braided river benthic diversity at multiple spatial scales: a hierarchical analysis of β diversity in complex floodplain systems. Journal of the North American Benthological Society, 28(3), 537-551, 2009.
    43.Gray D., Scarsbrook M.R., and Harding J.S., Spatial biodiversity patterns in a large New Zealand braided river. New Zealand Journal of Marine and Freshwater Research, 40(4), 631-642, 2006.
    44.Gualdoni C.M., Boccolini M.F., Oberto A.M., Principe R.E., Raffaini G.B., and Corigliano M.D.C., Potential habitats versus functional habitats in a lowland braided river (Córdoba, Argentina). Annales de Limnologie-International Journal of Limnology, 45(2), 69-78, 2009.
    45.Gurnell A.M., and Petts G.E., Island‐dominated landscapes of large floodplain rivers, a European perspective. Freshwater Biology, 47(4), 581-600, 2002.
    46.Haase P., Hering D., Jähnig S.C., Lorenz A.W., and Sundermann A., The impact of hydromorphological restoration on river ecological status: a comparison of fish, benthic invertebrates, and macrophytes. Hydrobiologia, 704(1), 475-488, 2013.
    47.Hair J.F., Black W.C., Babin B.J., and Anderson R.E., Multivariate data analysis. Pearson Education, Inc., Upper Saddle River, New Jersey, pp. 473, 2009.
    48.Halls A.S., and Welcomme R.L., Dynamics of river fish populations in response to hydrological conditions: a simulation study. River Research and Applications, 20(8), 985-1000, 2004.
    49.Han C.C., Tew K.S., Chen I.S., Su L.Y., and Fang L.S., Environmental biology of an endemic cyprinid, Varicorhinus alticorpus, in a subtropical mountain stream of Taiwan. Environmental Biology of Fishes, 59(2), 153–161, 2000.
    50.Harrison S.S.C., Pretty J.L., Shepherd D., Hildrew A.G., Smith C., and Hey R.D., The effect of instream rehabilitation structures on macroinvertebrates in lowland rivers. Journal of Applied Ecology, 41(6), 1140-1154, 2004.
    51.Harvey B.C., Susceptibility of young-of-the-year fishes to downstream displacement by flooding. Transactions of the American Fisheries Society, 116(8), 851-855, 1987.
    52.Helfield J.M., Engström J., Michel J.T., Nilsson C., and Jansson R., Effects of river restoration on riparian biodiversity in secondary channels of the Pite River, Sweden. Environmental management, 49(1), 130-141, 2012.
    53.Hosmer D.W., Hosmer T., Le Cessie S., and Lemeshow S., A comparison of goodness-of-fit tests for the logistic regression model. Statistics in Medicine, 16(9), 965–980, 1997.
    54.Huitema B., The analysis of covariance and alternatives: Statistical methods for experiments, quasi-experiments, and single-case studie. John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 49-50, 2011.
    55.Inoue M., and Nunokawa M., Effects of longitudinal variations in stream habitat structure on fish abundance: an analysis based on subunit-scale habitat classification. Freshwater Biology, 47(9), 1594-1607, 2002.
    56.Jähnig S.C., Brunzel S., Gacek S., Lorenz A.W., and Hering D., Effects of re‐braiding measures on hydromorphology, floodplain vegetation, ground beetles and benthic invertebrates in mountain rivers. Journal of Applied Ecology, 46(2), 406-416, 2009a.
    57.Jähnig S.C., Lorenz A., and Hering D., Hydromorphological parameters indicating differences between single‐and multiple‐channel mountain rivers in Germany, in relation to their modification and recovery. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(7), 1200-1216, 2008.
    58.Jähnig S.C., Lorenz A.W., and Hering D., Restoration effort, habitat mosaics, and macroinvertebrates—does channel form determine community composition?. Aquatic Conservation: Marine and Freshwater Ecosystems, 19(2), 157-169, 2009b.
    59.Jähnig S.C., Lorenz A.W., Lorenz R.R., and Kail J., A comparison of habitat diversity and interannual habitat dynamics in actively and passively restored mountain rivers of Germany. Hydrobiologia, 712(1), 89-104, 2013.
    60.Kiss T., and Sipos G., Braided-scale channel geometry changes in a sand-bedded river: Significance of low stages. Geomorphology, 84(3), 209-221, 2007.
    61.Klein J.P., Robach F., Vanderpoorten A., and Tremolieres M., Spatio-temporal aquatic vegetation patterns in former channels in relation to their isolation from the river Rhine (Eastern France). Acta Botanica Gallica, 142(6), 601-616, 1995.
    62.Knighton D., Fluvial Forms and Processes: A New Perspective. Arnold, 1998.
    63.Lamberti G.A., Gregory S.V., Ashkenas L.R., Wildman R.C., and Moore K. M.S., Stream ecosystem recovery following a catastrophic debris flow. Canadian Journal of Fisheries and Aquatic Sciences, 48(2), 196-208, 1991.
    64.Lee P.Y., and Suen J.P., Niche partitioning of fish assemblages in a mountain stream with frequent natural disturbances–an examination of microhabitat in riffle areas. Ecology of Freshwater Fish, 21(2), 255-265, 2012.
    65.Leopold L.B., and Wolman M.G., River channel patterns: braided, meandering and straight. United States Geological Survey Professional Paper, 282-B, 39-85, 1957.
    66.Leopold L.B., A view of the river. Cambridge, MA: Harvard University Press, 1994.
    67.Leopold L.B., Wolman M.G., and Miller J.P., Fluvial Processes in Geomorphology. San Francisco: Freeman, 1964.
    68.Lévêque C., Biodiversity dynamics and conservation: the freshwater fish of tropical Africa. Cambridge University Press, 1997.
    69.Lojkásek B., Lusk S., Halačka K., Lusková V., and Drozd P., The impact of the extreme floods in July 1997 on the ichthyocenosis of the Oder Catchment area (Czech Republic). Hydrobiologia, 548(1), 11-22, 2005.
    70.Lüderitz V., Speierl T., Langheinrich U., Völkl W., and Gersberg R.M., Restoration of the Upper Main and Rodach rivers–The success and its measurement. Ecological Engineering, 37(12), 2044-2055, 2011.
    71.Maddock I., The importance of physical habitat assessment for evaluating river health. Freshwater Biology, 41(2), 373-391, 1999.
    72.Matthews W.J., Fish faunal structure in an Ozark stream: stability, persistence and a catastrophic flood. Copeia, 1986(2), 388-397, 1986.
    73.Mattingly H.T., and Galat D.L., Distribution patterns of the threatened Niangua darter, Etheostoma nianguae, at three spatial scales, with implications for species conservation. Copeia, 2002(3), 573-585, 2002.
    74.Morán‐López R., Da Silva E., Pérez‐Bote J.L., and Corbacho Amado C., Associations between fish assemblages and environmental factors for Mediterranean‐type rivers during summer. Journal of fish biology, 69(5), 1552-1569, 2006.
    75.Mosley M.P., Analysis of the effect of changing discharge on channel morphology and instream uses in a braided river, Ohau River, New Zealand. Water resources research, 18(4), 800-812, 1982.
    76.Nanson G.C., and Croke J.C., A genetic classification of floodplains. Geomorphology, 4(6), 459-486, 1992.
    77.Natsumeda T., Effects of a severe flood on the movements of Japanese fluvial sculpin. Environmental biology of fishes, 68(4), 417-424, 2003.
    78.Obrdlik P., and Garcia-Lozano L.G., Spatio-temporal distribution of macrozoobenthos abundance in the Upper Rhine alluvial floodplains. Archiv für Hydrobiologie, 124(2), 205-224, 1992.
    79.Parker G., On the cause and characteristic scales of meandering and braiding in rivers. Journal of Fluid Mechanics, 76(3), 457-480, 1976.
    80.Pegg M.A., and McClelland M.A., Spatial and temporal patterns in fish communities along the Illinois River. Ecology of Freshwater Fish, 13(2), 125-135, 2004.
    81.Picco L., Mao L., Cavalli M., Buzzi E., Rainato R., and Lenzi M.A., Evaluating short-term morphological changes in a gravel-bed braided river using terrestrial laser scanner. Geomorphology, 201, 323-334, 2013.
    82.Platts W.S., Megahan W.F., and Minshall G.W., Methods for evaluating stream, riparian, and biotic conditions. U.S. Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report, 138, 1-70, 1983.
    83.Puckridge J.T., Walker K.F., and Costellope J.F., Hydrological persistence and the ecology of dryland rivers. Regulated Rivers: Research and Management, 16(5), 385-402, 2000.
    84.Pusey B.J., Arthington A.H., and Read M.G., Spatial and temporal variation in fish assemblage structure in the Mary River: the influence of habitat structure. Environmental Biology of Fishes, 37(4), 355-380, 1993.
    85.Rabeni C.F., Evaluating physical habitat integrity in relation to the biological potential of streams. Hydrobiologia, 422/423(0), 245-256, 2000.
    86.Reinhold A.M., Bramblett R.G., Zale A.V., Poole G.C., and Roberts D.W., Spatially Dependent Responses of a Large-River Fish Assemblage to Bank Stabilization and Side Channels. Transactions of the American Fisheries Society, 146(5), 967-982, 2017.
    87.Robert A., River processes: an introduction to fluvial dynamics. Arnold, 2003.
    88.Roghair C.N., Dolloff C.A., and Underwood M.K., Response of a brook trout population and instream habitat to a catastrophic flood and debris flow. Transactions of the American Fisheries Society, 131(4), 718-730, 2002.
    89.Rosgen D.L., A classification of natural rivers. Catena, 22(3), 169-199, 1994.
    90.Sato P., Dramatic decline in population abundance of Salvelinus leucomaenis after a severe flood and debris flow in a high gradient stream. Journal of Fish Biology, 69(6), 1894-1854, 2006.
    91.Schiemer F., Keckeis H., Reckendorfer W., and Winkler G., The “inshore retention concept” and its significance for large rivers. Archiv für Hydrobiologie, Supplement, 135 (Suppl. 2-4), 509-516, 2001.
    92.Schwartz J.S., and Herricks E.E., Use of prepositioned areal electrofishing devices with rod electrodes in small streams. North American Journal of Fisheries Management, 24(4), 1330-1340, 2004
    93.Seegrist D.W., and Gard R., Effects of floods on trout in Sagehen Creek, California. Transactions of the American Fisheries Society, 101(3), 478-482, 1972.
    94.Soulsby C., Grant J., Gibbins C., and Malcolm I.A., Spatial and temporal variability of Atlantic salmon (Salmo salar L.) spawning activity in braided river channels: a preliminary assessment. Aquatic Sciences, 74(3), 571-586, 2012.
    95.Sukhodolov A., Bertoldi W., Wolter C., Surian N., and Tubino M., Implications of channel processes for juvenile fish habitats in Alpine rivers. Aquatic sciences, 71(3), 338-349, 2009.
    96.Swanson F.J., Johnson S.J., Gregory S.V., and Acker S.A., Flood disturbance in a forested mountain landscape. Bioscience, 48(9), 681-689, 1998.
    97.Tew K.S., Han C.C., Chou W.R., and Fang L.S., Habitat and fish fauna structure in a subtropical mountain stream in Taiwan before and after a catastrophic typhoon. Environmental Biology of Fish, 65(4), 457-462, 2002.
    98.Thieme M.L., Mclvor C.C., Brouder M.J., and Hoffnagle T.L., Effects of pool formation and flash flooding on relative abundance of young-of-year flannelmouth suckers in the Paria River, Arizona. Regulated Rivers: Research and Management, 17(2), 145-156, 2001.
    99.Thorne C.R., Hey R.D., and Newson M.D., Applied fluvial geomorphology for river engineering and management. John Wiley: Chichester, 1997.
    100.Tikkanen P., Laasonen P., Muotka T., Huhta A., and Kuusela K., Short-term Recovery of Benthos Following Disturbance from Stream Habitat Rehabilitation. Hydrobiologia, 273(2), 121-130, 1994.
    101.Valdez R.A., Hoffnagle T.L., McIvor C.C., McKinney T., and Leibfried W.C., Effects of a test flood on fishes of the Colorado River in Grand Canyon, Arizona. Ecological Applications, 11(3), 686-700, 2001.
    102.van der Nat D., Schmidt A.P., Tockner K., Edwards P.J., and Ward J.V., Inundation dynamics in braided floodplains: Tagliamento River, northeast Italy. Ecosystems, 5(7), 636-647, 2002.
    103.van der Nat D., Tockner K., Edwards P.J., Ward J.V., and Gurnell A.M., Habitat change in braided flood plains (Tagliamento, NE-Italy). Freshwater Biology, 48(10), 1799-1812, 2003.
    104.Ward J.V., Tockner K., Arscott D.B., and Claret C., Riverine landscape diversity. Freshwater Biology, 47(4), 517-539, 2002.
    105.Welker T.L., and Scarnecchia D.L., River alteration and niche overlap among three native minnows (Cyprinidae) in the Missouri River hydrosystem. Journal of Fish Biology, 68(5), 1530-1550, 2006.
    106.Wesner J.S., Shoaling species drive fish assemblage response to sequential large floods in a small midwestern USA stream. Environmental biology of fishes, 91(2), 231-242, 2011.
    107.Wintersberger H., Spatial resource utilization and species assemblages of larval and juvenile fishes. Large Rivers, 11(1), 29-44, 1996.
    108.Wolter C., and Sukhodolov A., Random displacement versus habitat choice of fish larvae in rivers. River Research and Applications, 24(5), 661-672, 2008.
    109.Wyżga B., Oglęcki P., Radecki-Pawlik A., Skalski T., and Zawiejska J., Hydromorphological complexity as a driver of the diversity of benthic invertebrate communities in the Czarny Dunajec River, Polish Carpathians. Hydrobiologia, 696(1), 29-46, 2012.

    下載圖示 校內:2020-01-01公開
    校外:2022-01-01公開
    QR CODE