| 研究生: |
吳貞瑩 Wu, Zhen-Ying |
|---|---|
| 論文名稱: |
以Fe2O3/SiO2載氧體在高溫化學環路燃燒一氧化碳及氫氣之研究 Study on High-Temperature Chemical-Looping Combustion with CO and H2 Using Fe2O3/SiO2 |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 化學環路燃燒 、載氧體 、一氧化碳 、氫氣 、硫化氫 |
| 外文關鍵詞: | Chemical looping combustion, Oxygen carrier, CO, H2, Hydrogen sulfide |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於全球對能源需求益增,但在化石燃料蘊藏有限的危機下,未來開發再生能源的利用已是不可避免的趨勢。為減低對石油的依賴程度,避免環保阻力及達成較低之營運成本,煤炭氣化複循環發電是相當理想的方式。化學環路燃燒系統即是種有別於傳統化石燃料發電廠的新穎技術,除了有效控制NOx的生成和CO2的排放,還能有較高的發電效率。
本研究探討以自行製備之Fe2O3/SiO2及NiO/SiO2進行載氧及與CO/H2反應之研究,研究成果主要分成以下幾點探討:
1. 探討金屬載氧體在高溫下與CO/H2單獨反應及同時反應之評估,利用TGA測試得知Fe2O3在高溫下多次再生後較能保有穩定的還原效果。
2. 進一步研究操作因子對其反應性的影響,以反應管模擬固定床,當CO濃度增加會提高Fe2O3的利用率,顯示載氧體與CO之間的反應性良好,若再將H2濃度提高至20%則利用率會近百分之百。
3. H2使載氧體的還原速度較CO來得迅速,在還原氣氛總濃度相同時顯示有H2的加入才能讓載氧體利用性能更好。
4. 利用以各項分析儀器進行反應前後載氧體的結構、元素組成與晶相之變化。XRD圖譜發現還原後之載氧體產生矽鐵氧化物,新鮮及多次還原氧化後之載氧體,皆沒有發現矽鐵氧化物的晶相。
5. 多次循環後粒徑增大會讓孔洞體積變小,載氧體由中孔洞轉變為巨孔洞,顯示粒徑增大會讓孔洞體積變小,表面積下降造成載氧體活性降低。
6. H2S加入還原氣氛產生硫化反應,FeS的生成遮蔽了載氧體內的活性孔洞使得整理利用率下降。
7. 探討載氧體Fe2O3與CO及H2之反應動力特性。
The proposed Taiwan strategy to meet the challenge of future energy supply is based, among others like e.g. renewable, on fossil fuel conversion and subsequent capture and sequestration of the greenhouse gas CO2. The idea is to deposit concentrated CO2 in save geological storages like gas fields instead of uncontrolled emission in the atmosphere.
Chemical looping combustion (CLC) is such a new, indirect combustion process with inherent separation of CO2. The technology was found to be one of the absolute best in the cost evaluation. The process features 100% CO2 capture, a highly concentrated stream of CO2 ready for sequestration, no NOX emission, and no costs or energy penalties for gas separation. In the present work, a best homemade metal oxide sorbent, Fe2O3/SiO2 and NiO/SiO2, will be chosen to react with CO/H2 in an oven.
The objectives can be classified into seven major parts:
1. Investigation of metal oxygen carriers react with CO and H2 alone and simultaneously under the high temperature. From the TGA reduction test, Fe2O3 react with CO and H2 more stable reducing effective than NiO after several regeneration.
2. To known the effects of operating factors, we tests in a fixed bed reactor to determine CO and H2 gas concentrations obtained at the outlet during the reduction reaction. During reduction with increasing CO concentration of the Fe2O3, this carrier showed well utilization and high reduction reactivities. However, enhance the concentration of H2 to 20%, the utilization will reach as high as 100%.
3. Under reduction condition, the H2 and CO total concentration is the same that demonstrates the addition of H2 make the oxygen carrier performance getting better. Hence, the H2 cause the reducing rate of oxygen carrier is more rapidly than CO.
4. Several instruments will be used for observing the structure change, elemental composition and crystal transformation. From the XRD pattern, it can be found that the Si-Fe compounds are produced by the reduced oxygen carriers. However, the oxygen carriers of fresh and oxidation don’t observe the compounds.
5. After several regenerations, the pore volume decrease with increasing pore diameter. Hence, oxygen carrier pore volume will be transformed from mesoporous to macroporous, reducing specific surface area and result the oxygen carrier activation declined.
6. Under reduction condition, Fe2O3 react with H2S will be reduced to FeS. The FeS will foul the interfacial active site of oxygen carrier and lower the utilization.
7. The kinetic model for the reaction of Fe2O3 oxygen carrier with CO and H2 of the experimental results.
Abad, A., Mattisson, T., Lyngfelt, A., Ryden, M., “Chemical-Looping Combustion in a 300W Continuously Operating Reactor System Using a Manganese-Based Oxygen Carrier”, Fuel, 85, 1174-1185, 2006.
Abbasian, J., Slimane, R.B., “A Regenerable Copper-Based Sorbent for H2S Removal from Coal Gases”, Industrial and Engineering Chemistry Research, 37, 2775-2782, 1998.
Adanez, J., de Diego, L.F., Garcia-Labiano, F., Gayan, P., Abad, A., Palacios, J.M., “Selection of Oxygen Carriers for Chemical-Looping Combustion”, Energy and Fuels, 18, 371-377, 2004.
Atimtay, E., Tuna, M.E., “Designing the Concrete Dual System”, Structural Engineering, Mechanics and Computation., p.1009-1015, 2001.
Ayala, R.E., Marsh, D.W., “Characterization and Long-Range Reactivity of Zinc Ferrite in High-Temperature Desulfurization Processes”, Industrial and Engineering Chemistry Research, 30, 55-60, 1991.
Bakker, W.J.W., Kapteijn, F., Moulijn, J.A., “A High Capacity Manganese-Based Sorbent for Regenerative High Temperature Desulfurization with Direct Sulfur Production Conceptual Process Application to Coal Gas Cleaning”, Chemical Engineering Journal, 96, 223-235, 2003.
Cho, P., Mattisson, T., Lyngfelt, A., “Comparison of Iron-, Nickel-, Copper- and Manganese-Based Oxygen Carriers for Chemical-Looping Combustion”, Fuel, 83, 1215-1225, 2004.
Corbella, B.M., De Diego, L.F., Garcia-Labiano, F., Adanez, J., Palacios, J.M., “Characterization Study and Five-Cycle Tests in a Fixed-Bed Reactor of Titania-Supported Nickel Oxide as Oxygen Carriers for the Chemical-Looping Combustion of Methane”, Environmental Science and Technology, 39, 5796-5803, 2005.
Cuong, P. H., Estournes, C., Heinrich, B., Ledoux, M. J., “High Temperature H2S Removal over High Specific Surface Area β-SiC Supported Iron Oxide Sorbent-part 2 Perparation and Characterization”, Journal of the Chemical Society, Faraday Transactions., 94, 443-450, 1998.
De Diego, L.F., Garcia-Labiano, F., Adanez, J., Gayan, P., Abad, A., Corbella, B.M. et al, “Development of Cu-based Oxygen Carriers for Chemical-Looping Combustion”, Fuel, 83, 1749-1757, 2004.
De Diego, L.F., Ortiz, M., Adanez, J., Garcia-Labiano, F., Abad, A., Gayan, P., “Synthesis gas generation by chemical-looping Reforming in a Batch Fluidized Bed Reactor Using Ni-based Oxygen Carriers”, Chemical Engineering Journal, 144, 289-298, 2008.
Garcia-Labiano, F., Adanez, J., de Diego, L.F., Gayan, P., Abad, A., “Effect of Pressure on the Behavior of Copper-, Iron-, and Nickel-Based Oxygen Carriers for Chemical-Looping Combustion”, Energy and Fuels, 20, 26-33, 2006.
Gregg, S.J., Sing, K.S.W., “Adsorption, Surface Area and Porosity”, Academic Press, London, 1982.
Hiemenz, P.C., “Principles of Colloid and Surface Chemistry”, M. Dekker, 1986.
Hong, H., Jin, H.G., Liu, B.Q., “A Novel Solar-Hybrid Gas Turbine Combined Cycle with Inherent CO2 Separation Using Chemical-Looping Combustion by Solar Heat Source”, Journal of Solar Energy Engineering, 128, 275-284, 2006.
Hossain, M.M., Sedor, K.E., de Lasa, H.I., “Co-Ni/Al2O3 Oxygen Carrier for Fluidized Bed Chemical-Looping Combustion: Desorption Kinetics and Metal-Support Interaction”, Chemical Engineering Science, 62, 5464-5472, 2007
Hossain, M.M., de Lasa, H.I.. “Chemical-Looping Combustion (CLC) for Inherent CO2 Separations--a Review”, Chemical Engineering Science, 63, 4433-4451, 2008.
Ishida, M., Jin, H.G., “A Novel Chemical-Looping Combustor without NOx Formation”, Industrial and Engineering Chemistry Research, 35, 2469-2472, 1996.
Ishida, M., Yamamoto, M., Ohba, T., “Experimental Results of Chemical-Looping Combustion with NiO/NiAl2O4 Particle Circulation at 1200 Degrees C”, Energy Conversion Management, 43, 1469-1478, 2002.
Jerndal, E., Mattisson, T., Lyngfelt, A., “Thermal Analysis of Chemical-Looping Combustion”, Chemical Engineering Research and Design, 84, 795-806, 2006.
Jin, H.G., Ishida, M., “Reactivity Study on a Novel Hydrogen Fueled Chemical-Looping Combustion”, International Journal of Hydrogen Energy, 26, 889-894, 2001.
Jin, H.G., Okamoto, T., Ishida, M., “Development of a Novel Chemical-Looping Combustion: Synthesis of a Solid Looping Material of NiO/NiAl2O4”, Industrial and Engineering Chemistry Research, 38, 126-132, 1999.
Lew, S., Sarofim, A.F., Flytzani-Stephanopoulos, M., “The Reduction of Zinc Titanate and Zinc-Oxide Solids”, Chemical Engineering Science, 47, 1421-1431, 1992.
Li, Z.J., Flytzani-Stephanopoulos, M., “Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization”, Industrial and Engineering Chemistry Research, 36, 187-196, 1997.
Lyngfelt, A., Leckner, B., Mattisson, T., “A Fluidized-Bed Combustion Process with Inherent CO2 Separation; Application of Chemical-Looping Combustion”, Chemical Engineering Science, 56, 3101-3113, 2001.
Mattisson, T., Lyngfelt, A., Cho, P., “The Use of Iron Oxide as an Oxygen Carrier in Chemical-Looping Combustion of Methane with Inherent Separation of CO2”, Fuel, 80, 1953-1962, 2001.
Niemantsverdriet, J.W., “Spectroscopy in Catalysis”, Weinheim, 1993.
Patrick, V., Gavalas, G.R., Flytzani-Stephanopoulos, M., Jothimurugesan, K., “High-Temperature Sulfidation Regeneration of CuO-Al2O3 Sorbents”, Industrial and Engineering Chemistry Research, 28, 931-940, 1989.
Piotrowski, K., Mondal, K., Lorethova, H., Stonawski, L., Szymanski, T., Wiltowski, T., “Effect of Gas Composition on the Kinetics of Iron Oxide Reduction in a Hydrogen Production Process”, International Journal of Hydrogen Energy, 30, 1543-1554, 2005.
Richter, H.J., Knoche, K.F., “Reversibility of Combustion Processes”, Acs Symposium Series, 235, 71-85, 1983.
Sasaoka, E., Sakamoto, M., Ichio, T., Kasaoka, S., Sakata, Y., “Reactivity and Durability of Iron-oxide High-Temperarure Desulfurization Sorbents”, Energy and Fuels, 7, 632-638, 1993.
Satterfield, C.N., “Heterogeneous Catalysis in Industrial Practice 2E”, McGraw-Hill, Inc, 1991.
Skoog D. A., Holler F. J., A., N.T., “Principles of Instaumental Analysis 5E”, Saunders College Publishing, 1998.
Son, S.R., Go, K.S., Kim, S.D., “Thermogravimetric Analysis of Copper Oxide for Chemical-Looping Hydrogen Generation”, Industrial and Engineering Chemistry Research, 48, 380-387, 2009.
Tian, H.J., Chaudhari, K., Simonyi, T., Poston, J., Liu, T.F., Sanders, T. et al, “Chemical-looping Combustion of Coal-derived Synthesis Gas Over Copper Oxide Oxygen Carriers”, Energy and Fuels, 22, 3744-3755, 2008.
Van der Ham, A.G.J., Vanderbosch, R.H., Prins, W., “Survey of Desulfurization Processes for Coal Gas” In:Atimtay, A. A., Harrison, D. P.(eds), Desulfurization of Hot Coal Gas”, NATO ASI Ser, 42, 117-136, 1996.
Villa, R., Cristiani, C., Groppi, G., Lietti, L., Forzatti, P., Cornaro, U. et al, “Ni Based Mixed Oxide Materials for CH4 Oxidation under Redox Cycle Conditions”, Journal of Molecular Catalysis A: Chemical, 204-205, 637-646, 2003.
Westmoreland, P.R., Harrison, D.P., “Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gases”, Environmental Science Technology, 10, 659-661, 1976.
Wolf, J., Yan, J., “Parametric Study of Chemical Looping Combustion for Tri-Generation of Hydrogen, Heat, and Electrical Power with CO2 Capture”, International Journal Energy Research, 29, 739-753, 2005.
Zafar, Q., Mattisson, T., Gevert, B., “Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4”, Energ Fuel, 20, 34-44, 2006.
Zaho, J., Huang,J, Zhang, J.,Wang, Y., “Influence of Fly Ash on High Temperature Desulfurization Using Iron Oxide Sorbent”, Energy and Fuels, 16, 1585-1590, 2002.
中國鋼鐵股份有限公司,「能源密集產業採用淨煤發電技術應用規劃計劃」,經濟部能源委員會,2000。
朱信、曾明宗,「煤炭企劃複循環發電機組可行性之研究」,工業技術研究院能源與資源研究所、台灣電力公司電力綜合研究所研究計畫期末報告,p.26-29,1991。
行政院環境保護署,「空氣污染防治專責人員訓練教材」,2009。
李勝利,「各類型偵測感應器簡介」,勞工安全衛生簡訊,第76期13-15,2006。
林曉菁,「以鹼性添著碳處理硫化氫與甲硫醇效率影響因子之研究」,國立成功大學環境工程學系碩士論文,1996。
柯清水,「養殖池中硫化氫之成因及對策」,養魚世界, p.36-39,1999。
紀景發,「以混合碳材為PtRu/ C觸媒擔體用於改良直接甲醇燃料電池中陽極觸媒層之效能」,國立成功大學化學工程研究所,碩士論文,2006。
徐恆文,「煤炭氣化技術發展趨勢」,燃煤新技術研討會,2001。
陳陵援、吳慧眼著,「儀器分析」,三民書局,八月,2000。
望熙榮(譯),Cooper, C. D., Alley, F. C.,「空氣污染防治」,中央圖書,1998。
黃正忠,「煤炭的應用與能源政策」,2007。
賀長富,「台北市北投區溫泉業維修作業人員硫化氫暴露之研究」,中國文化大學勞工研究所,碩士論文,2001。
勞工安全衛生研究所MSDS資料庫。
闕志全,「V2O5/TiO2 部分氧化觸媒之特性分析及反應行為探討」,國立中正大學化學工程研究所碩士論文,2008。