| 研究生: |
曹雅萍 Sulistyo, Elita Nurfitriyani |
|---|---|
| 論文名稱: |
溶解性有機物種類對光化學生成奈米銀顆粒之影響 The Effect of Dissolved Organic Matter Sources on the Photochemical Formation of Silver Nanoaprticles |
| 指導教授: |
侯文哲
Hou, Wen-Che, |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 奈米銀 、溶解有機物 、光還原反應 、分光光譜儀 |
| 外文關鍵詞: | dissolved organic matter sources, formation of AgNPs, silver nanoparticles, uv-visible |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
奈米銀微粒(AgNPs)因為擁有良好的抗菌性而在生活中被廣泛地使用,在32個國家的統計裡,奈米銀是日常用品中使用頻率最高的奈米材料(24%),但是其產生的銀離子會與自然界中的天然有機物(NOM)結合並且於陽光下還原成AgNPs散布在環境中,因此,本研究主要探討在土壤、河川、汙水和湖泊中的溶解性有機物(DOM)對於銀離子的光還原反應所造成的影響。
本研究中我們使用了包括土壤、河川、汙水廠和湖泊等不同DOM,並且利用分光光譜儀所測出的七種光學參數來分析水體與AgNPs的產生,所使用的參數包括S275-295、 S350-400、 S290-600、 SR、SUVA 254、 SUVA 280和E2/E3。在結果中顯示,DOM的來源顯著地影響AgNPs在自然水體中的光化學生成,其中DOM的分子量大小和腐殖化程度扮演著重要的角色,在S275-295 和 E2/E3與AgNPs產率的線性回歸中有明顯的相關性,代表著DOM的分子量越大、腐殖化程度越高都會銀離子的光還原反應。
關鍵字:奈米銀、溶解有機物、光還原反應、分光光譜儀。
Abstract
Silver nanoparticles (AgNPs) are a commonly used nanoparticle and have useful characteristics such as excellent antibacterial property. A recent survey indicates that AgNPs are one of the most frequently used (24%) nanomaterials in the consumer products available on the markets across 32 countries. AgNPs once released into the environment could be oxidized to form silver ions which could be bound to dissolved organic matter (DOM). It has been shown that silver ions can be photoreduced to form AgNPs by natural organic matter (NOM) under sunlight conditions. Given that there is a range of DOMs that could be found in the environment, the aim of this thesis is to evaluate the effect of DOM samples isolated from soils, rivers, wastewater effluents, and lakes on the photoreduction of silver ion to form AgNPs.
In this study, we used ten different DOM samples isolated from soils, rivers, wastewater effluents, and lakes. We evaluated the characteristics of DOMs including spectral slopes (S275-295, S350-400, and S290-600), slope ratio, SUVA 254, SUVA 280 and E2/E3 in relation to their photoreduction of silver ions to form AgNPs. The result indicated that the sources of DOM significantly affected the formation of AgNPs in aqueous solutions. It was shown that molecular weight, DOM size, and the degree of humification played a role in the photochemical formation of AgNPs. The linear regression result of slope ratio, S275-295 and E2/E3 indicated that DOM samples with higher molecular weights and degree of humification correlated with their greater capabilities to effect photoreduction of silver ions.
Keywords : dissolved organic matter sources, formation of AgNPs, silver nanoparticles, UV-visible absorbance.
Adegboyega, N. F., Sharma, V. K., Siskova, K., Zboril, R., Sohn, M., Schultz, B. J., & Banerjee, S. (2013). Interactions of Aqueous Ag+ with Fulvic Acids: Mechanisms of Silver. Environ. Sci Technol, 47, 757-764.
Archer, A. D., & Singer, P. C. (2006). Effect of SUVA and enhanced coagulation on removal of TOX precursors. Journal of American Water Works Association, 98(8), 97-107.
Benn, T. M., & Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol, 42, 4133−4139.
Blough, N. V., & Zafiriou, O. C. (1993). Optical Absorption Spectra of Waters From the Orinoco River Outflow: Terrestrial Input of Colored Organic Matter to the Caribbean. Journal of Geophysical Research, 98, 2271-2278.
Cai , W. J., & Wang, Y. (1998). The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol. Oceanogr, 43(4), 657-668.
Carder , K. L., Steward , R. G., Harvey , G. R., & Ortner, P. B. (1989). Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnol. Oceanogr, 34 (1), 68-81.
Chen, H., Zheng, B., Song, Y., & Qin, Y. (2011). Correlation Between Molecular Absorption Spectral Slope Ratios and Fluorescence Humification Indices In Characterizing CDOM. Aquat Sci, 73, 103–112.
Chin, Y. P., Aiken, G., & O'Loughlin, E. (1994). Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science and Technology, 28, 1853-1858.
Danielsson, L. G. (1982). On the use of filters for distinguishing between dissolved and particulate factions in natural water. Water Research, 16, 179-182.
Dotson, A. D. (2008). Structure and treatability of organic nitrogen-enriched drinking water. USA: Arizona State University.
Edzwald, J. K. (2011). Water Quality and Treatment: A Handbook on Drinking Water Sixth Edition. Journal American Water Works Association, 58-59.
Edzwald, J. K., & Tobiason, J. E. (1999). Enhanced coagulation: USA requirements and broader view. Water Science and Technology, 40(9), 63-70.
Fabrega, J., Luoma, S. N., & Tyler, C. R. (2011). Silver nanoparticles: Behaviour and effects in the Aquatic Environment. Environment International, 37, 517-531.
Gao, H., & Zepp, R. G. (1998). Factors Influencing Photoreactions of Dissolved Organic Matter in a Coastal River of the Southeastern United States. Environ. Sci. Technol, 32(19), 2940-2946.
Geranio, L., Heuberger, M., & Nowack, B. (2009). The Behavior of Silver Nanotextiles during Washing. Environ. Sci. Technol, 43 (21), 8113-8118.
Haan, H. D., & Boer, T. D. (1987). Applicability of light absorbance and fluorescence as measures of concentration and molecular size of dissolved organic carbon in humic Lake Tjeukemeer. Water Research, 21(6), 731-734.
Hayase, K., & Tsubota, H. (1985). Sedimentary humic acid and fulvic acid as fluorescent organic materials. Geochimica et Cosmochimica Acta, 49(1), 159-163.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., & Mopper, K. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr, 53(3), 955–969.
Hou, W. C., Stuart, B., Roberta, H., & Zepp, R. G. (2013). Sunlight-Driven Reduction of Silver Ions by Natural Organic Matter: Formation and Transformation of Silver Nanoparticles. Environ. Sci. Technol, 47, 7713-7721.
Hur, J., Williams, M. A., & Schlautman, M. A. (2006). Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis. Chemosphere, 63, 387-402.
Jacangelo, J. G., Demarco, J., Owen, D. M., & Randtke, S. J. (1995). Selected processes for removing NOM : an overview : Natural organic matter. Journal American Water Works Association, 87, 64-77.
Klavins, M., Sire, J., Purmalis, O., & Melecis, V. (2008). Approaches to estimating humification indicators for peat Mires and Peat. International Mire Conservation Group and International Peat Society, 3, 1819-1834.
Komada, T., Schofield, O. M., & Reimers, C. E. (2002). Fluorescence characteristics of organic matter released from coastal sediments during resuspension. Marine Chemistry, 79, 81– 97.
Leenheer, J. A., & Croue, J. P. (2003). Leenheer, J.A. Croue, J.P Characterizing Dissolved Aquatic Organic matter: Understanding the unknown structures is key to better treatment of drinking water. Environ. Sci. Technol, 37 (1), 19A-26A.
Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of nanomaterials in the environment. Environ. Sci. Technol, 46, 6893−6899.
Matilainen, A., Lindqvist, N., Korhonen, S., & Tuhkanen, T. (2002). Removal of NOM in the different stages of the water treatment process. Environment International, 28, 457-46.
McKnight, D. M., & Aiken , G. R. (1998). Sources and age of aquatic humus. In: Hessen, D, and Tranvik, L. (Eds.). Aquatic humic substances. Ecology and Biogeochemistry. Springer-Verlag, 130, 9-39.
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46 (1), 38-48.
Mobed, J. J., Hemmingsen , S. L., Autry, J. L., & McGown, L. B. (1996). Mobed, J.J., Hemmingsen, S.L., AuFluorescence Characterization of IHSS Humic Substances: Total Luminescence Spectra with Absorbance Correction. Environ. Sci. Technol, 30, 3061-3065.
Morris, D. P., & Hargreaves , B. R. (1997). The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnol. Oceanogr, 42(2), 239-249.
Owen, D., Amy, G., Chowdhury, Z., Paode, R., McCoy, G., & Viscosil, K. (1995). NOM characterization and treatability. Journal American Water Works Association, 87, 46-63.
Peuravuori, J., & Pihlaja, K. (1997). Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta, 337(2), 133-149.
Schnitzer, M., & Skinner, S. M. (1969). Free radicals in soil humic compounds. Soil Science, 108(6), 383-390.
Schwarz, J. N., Kowalczuk, P., Kaczmarek , S., Cota, G. F., Mitchell , B. G., Kahru , M., . . . Raine, R. (2002). Two models for absorption by coloured dissolved organic matter (CDOM). Oceanologia, 44, 209-241.
Sharma, S. K., Rodriguez, S., Baghoth, S. A., Maeng, S. K., & Amy, G. (2011). Natural Organic Matter (NOM): Characterization Profiling as a Basis for Treatment Process Selection and Performance Monitoring. In A. v. Nieuwenhuijzen, & J. v. Graaf (Eds.), Handbook on Particle Separation Processes (pp. 61-88). UK: IWA Publishing.
Świetlik, J., Dąbrowska, A., Raczyk-Stanisławiak, U., & Nawrocki, J. (2004). Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Research, 38, 547-558.
Tappina, A. D., Barriadab, J. L., Braungardt, C. B., Evans, E. H., Pateyc, M. D., & Achterberg, E. P. (2010). Dissolved silver in European estuarine and coastal waters. Water Research, 44, 4204-4216.
Thacker, S. A., Tipping, E., Baker, A., & Gondar, D. (2005). Development and application of functional assays for freshwater dissolved organic matter. Water Research, 39, 4559-4573.
Thurman, E. M. (1985). Organic Geochemistry of Natural Waters. , . Dordrecht, The Netherlands: Martinus Nijhoff/Dr. W. Junk Publishers.
Traina, S. J., Novak , J., & Smeck, N. E. (1989). An Ultraviolet Absorbance Method of Estimating the Percent Aromatic Carbon Content of Humic Acids. Journal of Environmental Quality, 19(1), 151-153.
Uyguner-Demirel, C. S., & Bekbolet, M. (2011). Significance of analytical parameters for the understanding of natural organic matter in relation to photocatalytic oxidation. Chemosphere, 84, 1009-1031.
Vahatalo, A. V., & Wetzel, R. G. (2004). Photochemical and microbial decomposition of chromophoric. Marine Chemistry , 89, 313 – 326.
Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. J. Nanotechnology, 6, 1769-1780.
Waiser, M. J., & Robarts, R. D. (2004). Photodegradation of DOC in a shallow prairie wetland: evidence from seasonal changes in DOC optical properties and chemical characteristics. Biogeochemistry, 69, 263-284.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol, 37, 4702-4708.
Wen, L. S., Santschi, P. H., Gill, G. A., & Tang, D. (2009). Silver concentrations in Colorado, USA, watersheds using improved methodology. Environ. Toxicol. Chem, 21, 2040-2051.
Yin, Y., Yu, S., Yang, X., Liu , J., & Jiang, G. (2015). Source and Pathway of Silver Nanoparticles to the Environment. Springer, 43-72.
Yu, S., & Liu, J. (2015). Separation and Determination of Silver Nanoparticles. In J. Liu, & G. Jiang (Eds.), Silver Nanoparticles (pp. 1-8). Berlin: Springer-Verlag.
校內:2021-01-20公開