簡易檢索 / 詳目顯示

研究生: 黃勤展
Huang, Chin-Chan
論文名稱: 高表面積含氮孔洞碳材及孔洞金屬氧化物空心球的合成與應用
Synthesis and Application of Porous Nitrogen-doped Carbon Material and Porous Metal Oxide Hollow Sphere
指導教授: 林弘萍
Ling, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 124
中文關鍵詞: 氮摻雜孔洞碳材二氧化鈦空心球
外文關鍵詞: nitrogen-doped, porous carbon, titanium oxide, hollow sphere
相關次數: 點閱:121下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為合成各式孔洞材料並發展其運用,共分成三個部分:第一部分是以ZnO為模板並加入動物明膠gelatin以及酚甲醛樹酯PF4161藉由共沉澱法合成高表面積的含氮孔洞碳材(nitrogen-doped porous carbon material),BET表面積約1300 m2g-1,經過微波加熱後N/C ratio約3.6 %,在以LiClO4/PC為電解液的組裝二極式電容器中有良好的電容保留率約65%,比能量密度約為14.8 Wh/kg;另外,將Pt以甲醇還原成奈米粒子分散至此種碳材表面,Pt/N-PC在擔載量8 wt.%Pt時電流已經超越商用觸媒E-TEK。第二部分是合成孔洞TiO2 NPs/CNT材料,利用檸檬酸鈦作為前驅物,可在水相中藉由調整pH值使得二氧化鈦以奈米粒子的方式分散於碳管表面,並能藉由實驗參數控制組成、分散性以及結晶度,TiO2 NPs/CNT作為光觸媒以直接照射太陽光降解高濃度Methylene Blue具有良好的效果;作為鋰電池負極材料則在50 C放電速率時可保持相當好的電容再現性。第三部分是研究以模板法合成孔洞金屬氧化物空心球材料,藉由控制碳空心球模板的大小,來合成不同大小的高表面積氧化鋁、二氧化鋯及二氧化鈦,其BET表面積分別約為180、140、70 m2g-1,將這些孔洞材料作為填充物與液晶混合封裝成metal oxide hollow sphere/LC能增加顯示器的散射區域,例如以二氧化鈦為填充物所封裝成的顯示器,在未施加電壓時,穿透度為10% (純液晶顯示器未施加電壓時穿透度為90%);填充物與液晶分子間的折射率匹配程度則是影響了施加飽和電壓後的穿透度。

    There are three major topics discussed in this thesis. In the first part, ZnO nanoparticles, which could be removed by hydrochloric acid, were used as templates blending with gelatin and phenol formaldehyde (PF) to synthesize nitrogen-doped porous carbon (N-PC). The charge-discharge characteristics of N-PC based supercapacitor gave a specific energy density 14.8 Wh/kg, and capacitance retention 65%. In addition, we incorporated Pt nanoparticles over N-PC to prepare Pt/N-PC catalyst. The linear sweep voltammetry for oxygen reduction reaction exhibited that 8 wt. % Pt/N-PC had larger current density than that of the commercial Pt/C (20 wt. %). In the second part, a water-soluble titanium citrate was used to prepare TiO2 NPs dispersed on CNTs by using a sol-gel method. The resulted TiO2 NPs/CNTs composites demonstrated a high-performance toward degradation of methylene blue. In the final part, we discussed the forming mechanism of hollow carbon sphere (HCS) by co-precipitation of silicate and PF. Using HCS as hard template, we synthesized different metal oxide hollow spheres such as Al2O3, ZrO2 or TiO2. After hydrophobic silane modification, the metal oxides would be filled with liquid crystals matrixes to create scattering domain. The resulted electro-optical device demonstrated that opaque state with a light transmittance of c.a. 10~40% up to metal oxides. In addition, the refraction index matching between LC and metal oxides would affect transmittance at a saturated applied voltage.

    第一章、緒論 1 1.1孔洞材料 1 1.2孔洞碳材 1 1.3明膠gelatin的簡介 1 1.4矽酸鹽的基本概念 2 1.5電催化氧氣還原反應的基本介紹 3 1.5.1氧氣還原反應的介紹 3 1.5.2旋轉電極(Rotating disk electrode) 5 1.5.3碳材為基礎的電極觸媒 7 1.5.4金屬為基礎的電極觸媒 8 1.6電容的基本介紹 9 1.6.1三極式電容器 11 1.6.2二極式電容器 11 第二章、材料合成步驟與樣品鑑定處理 12 2.1化學藥品 12 2.2材料的合成 14 2.2.1以ZnO為模板合成高表面積孔洞碳材 14 2.2.2合成孔洞TiO2/CNT材料 15 2.2.3以模板法合成孔洞金屬氧化物空心球材料 16 2.2.4以微乳法合成孔洞金屬氧化物空心球材料 19 2.3 二極式超級電容器置備方法與測試方法 19 2.3.1電極片的製備 19 2.3.2樣品前處理 20 2.3.3碳膜的製備 20 2.3.4二極式碳電極封裝 20 2.3.5二極式電容器檢測方法 22 2.4氧氣還原活性測試 32 2.4.1製作Ag/AgCl參考電極 32 2.4.2觸媒塗布與測試參數 33 2.5液晶封裝與鑑定 34 2.5.1金屬氧化物的修飾 35 2.5.2 LC液晶分子與孔洞材料的混合封裝與測試 35 2.6實驗儀器鑑定與分析 36 2.6.1 穿透式電子顯微鏡 (Transmission Electron Microscopy;TEM) 36 2.6.2 氮氣等溫吸附-脫附測量 (N2 adsorption/desorption isotherm) 36 2.6.3 X-射線粉末繞射光譜 (X-Ray Powder Diffraction;XRD) 40 2.6.4 熱重分析儀 (Thermal Gravimetric Analysis;TGA) 41 2.6.5 微波加熱器(microwave radiation heater) 41 第三章、以ZnO為模板合成孔洞氮摻雜碳材與其運用 42 3.1以ZnO為模板合成高表面積孔洞碳材之參數探討 42 3.1.1不同酚甲醛樹酯對孔洞碳材性質的影響 43 3.1.2沉澱pH值對合成碳材的影響 44 3.1.3水量對合成孔洞碳材的影響 46 3.1.4 ZnO對合成碳材的影響 47 3.1.5 gelatin/PF4161比例對合成孔洞碳材的影響 50 3.1.6氧化鋅-酚甲醛樹酯複合物經過水熱對合成碳材的影響 52 3.1.7以不同濃度、水量HCl酸洗對合成碳材的影響 53 3.1.8微波後處理對碳材的影響 54 3.2孔洞碳材的應用 56 3.2.1氮摻雜孔洞碳材在超級電容器上的運用 57 3.2.2氮摻雜孔洞碳材擔載Pt NPs在陰極觸媒ORR上的運用 65 第四章、以水相法合成孔洞TiO2 NPs/CNT材料 68 4.1合成孔洞二氧化鈦材料 68 4.1.1檸檬酸鈦的特性 68 4.1.2添加界面活化劑於合成系統中的影響 69 4.1.3 最佳參數的選擇結果 73 4.2合成孔洞TiO2 NPs/CNT材料 73 4.2.1孔洞TiO2 NPs/CNT的外觀與特質 74 4.2.2 CNT的添加量對TiO2/CNT比例的影響 74 4.2.3水量對合成的影響 75 4.2.4以隔氧加熱取代直接空氣煅燒並比較結果 76 4.2.5隔氧加熱溫度對材料結晶度的影響 77 4.2.6微波處理對材料的影響 78 4.2.7二氧化鈦奈米粒子擔載至奈米碳管表面的機制 80 4.3探討TiO2 NPs/CNT材料與光降解效率的關係 82 4.3.1 比較添加不同TiO2 NPs /CNT克數的光觸媒效能 82 4.3.2 比較不同二氧化鈦比例組成之TiO2 NPs /CNT的光觸媒效能 83 4.3.3 比較不同隔氧加熱溫度處理之TiO2 NPs /CNT的光觸媒效能 83 4.4探討TiO2/CNT材料作為鋰電池負極的電性測試情形 84 第五章、合成孔洞空心球材料 86 5.1合成硬模板-孔洞空心球狀碳材 86 5.1.1不同酚甲醛樹酯、界面活性劑、矽酸鹽熟化pH值對構型的影響 87 5.1.2不同PEG6000/PF2180比例對合成的影響 88 5.1.3以PF2180-PEG溶液的乙醇/水比調控酚甲醛樹酯的濃度對合成的影響 89 5.1.4以水量調整矽酸鹽的濃度對合成的影響 89 5.1.5改變矽酸鹽溶液的酸源探討鹽類效應的影響 90 5.1.6改變矽酸鹽溶液的熟化pH值對合成的影響 90 5.1.7空心球的成核機制 91 5.2以碳球硬模板來合成各式金屬氧化物空心球 91 5.2.1合成氧化鋁(Al2O3)空心球 92 5.2.2合成氧化鋯(ZrO2)空心球 94 5.2.3合成二氧化鈦(TiO2)空心球 95 5.3利用微乳沉澱法合成二氧化鈦空心球 99 5.4金屬氧化物空心球的應用 111 5.4.1照射太陽光作為光觸媒應用 111 5.4.2混合液晶分子作為智慧型窗戶應用 113 第六章、結論 117 參考文獻 119

    1.D. H. Everett, Pure Appl. Chem, 1971, 31, 579-638.
    2.A. B. Fuertes and D. M. Nevskaia, J. Mater. Chem., 2003, 13, 1843-1846.
    3.L. Guo, L. Zhang, J. Zhang, J. Zhou, Q. He, S. Zeng, X. Cui and J. Shi, Chem. Commun., 2009, 0, 6071-6073.
    4.C. Liang and S. Dai, Journal of the American Chemical Society, 2006, 128, 5316-5317.
    5.Y. Zhang, W.-S. Zhang, A.-Q. Wang, S. Li-Xian, M.-Q. Fan, H.-L. Chu, J.-C. Sun and T. Zhang, International Journal of Hydrogen Energy, 2007, 32, 3976-3980.
    6.J. Ding, K.-Y. Chan, J. Ren and F.-s. Xiao, Electrochimica. Acta., 2005, 50, 3131-3141.
    7.F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Angewandte Chemie International Edition, 2006, 45, 4467-4471.
    8.F. Su, J. Zeng, X. Bao, Y. Yu, J. Y. Lee and X. S. Zhao, Chem. Mater., 2005, 17, 3960-3967.
    9.J. Huang, B. G. Sumpter and V. Meunier, Chemistry, 2008, 14, 6614-6626.
    10.F. Ide and A. Hasegawa, Journal of Applied Polymer Science, 1974, 18, 963-974.
    11.K. Kataoka, Advanced Drug Delivery Reviews, 2001, 113-131.
    12.J. Eric Hampsey, Chem. Commun., 2005, 0, 3606-3608.
    13.B. Sarkar and P. Alexandridis, J. Phys. Chem. B, 2010, 114, 4485-4494.
    14.Si-Han Wu, Chung-Yuan Mou and Hong-Ping Lin, Chem. Soc. Rev., 2013, 42, 3862
    15. Chemistry (The Chinese Chem. Soc., Taipei) 2004, 62, 273
    16.C. Song and J. Zhang, Electrocatalytic Oxgen Reduction Reaction
    17. Yeager E, J. Mol. Catal. 1986, 38, 5–25.
    18. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. New York: Wiley, 1980.
    19.R. Kötz and M. Carlen, Electrochimica Acta, 2000, 45, 2483-2498.
    20.Zhang M, Langmuir 2004, 20, 8781–8785.
    21.E. Frackowiak, Journal of Power Sources, 2006, 153, 413-418.
    22.Maldonado S, J. Phys. Chem. B, 2005, 109, 4707–4716.
    23.Markovic NM, Ross PN. Surface science studies of model fuel cell electrocatalysts.
    Surf Sci Rep 2002;45:117–229.
    24.Zhdanov VP, Kasemo B. Kinetics of electrochemical O2 reduction on Pt. Electrochem. Commun., 2006, 8, 1132–6.
    25.Norskov JK, J. Phys. Chem. B, 2004,108,17886–92.
    26.Shi Z, Zhang J, Liu Z, Wang H, Wilkinson DP. Current status of ab initio quantum
    chemistry study for oxygen electroreduction on fuel cell catalysts Electrochim Acta,
    2006, 51, 1905–1916.
    27. Hoare JP, J. Phys. Chem-Us, 1996, 100, 9906-9910.
    28.B. Sarkar and P. Alexandridis, J. Phys. Chem. B, 2010, 114, 4485-4494.
    29.M. Hartmann, A. Poppl and L. Kevan, J. Phys. Chem-Us, 1996, 100, 9906-9910.
    30.A. J. Bard and L. R. Faulkner, “Electrochemical Methods:Fundamentals and Applications”, 2nd Edition, John Wiley & Sons. Inc., Singapore, 1980.
    31.胡啟章編著, “電化學原理與方法”, 五南圖書, 2002.
    32.田福助編著, “電化學理論與應用”, 第八版, 新科技, 2001.14. G. Lewin, G. Myers, V. Parsonnet and I. Zucker, ASAIO Journal, 1967, 13, 345-349.
    33.R. Kötz and M. Carlen, Electrochimica Acta, 2000, 45, 2483-2498.
    34.V. Peykov, A. Quinn and J. Ralston, Colloid and Polymer Science, 2000, 278, 789-793.
    35.A. Bourdon, V. Pasko, N. Y. Liu, S. Célestin, P. Ségur and E. Marode, Plasma Sources Science and Technology, 2007, 16, 656.
    36.R. J. Crawford, I. H. Harding and D. E. Mainwaring, J Colloid Interf Sci, 1996, 181, 561-570.
    37.D. E. Yates, S. Levine and T. W. Healy, J. Chem. Soc., Faraday Trans. 1, 1974, 70, 1807-1818.
    38.K. B. Oldham, J. Electroanal Chem., 2008, 613, 131-138.
    39.K. Xu, Y. Lam, S. S. Zhang, T. R. Jow and T. B. Curtis, The Journal of Physical Chemistry C, 2007, 111, 7411-7421.
    40.R. W. Impey, M. Sprik and M. L. Klein, Journal of the American Chemical Society, 1987, 109, 5900-5904.
    41.J. Prue and P. Sherrington, Transactions of the Faraday Society, 1961, 57, 1795-1808.
    42.E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota and F. Beguin, Journal of Power Sources, 2006, 153, 413-418
    43.G. Lewin, G. Myers, V. Parsonnet and I. Zucker, ASAIO Journal, 1967, 13, 345-349.
    44.J. Gamby, P. Taberna, P. Simon, J. Fauvarque and M. Chesneau, Journal of power sources, 2001, 101, 109-116.
    45.D. Qu and H. Shi, Journal of Power Sources, 1998, 74, 99-107.
    46.L. Nadjo and J. Savéant, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1973, 48, 113-145.
    47.K. Aoki, K. Akimoto, K. Tokuda, H. Matsuda and J. Osteryoung, Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 171, 219-230.
    48.C. Amatore and J. Savéant, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 85, 27-46.
    49.M. Doyle, T. F. Fuller and J. Newman, J. Electrochem. Soc., 1993, 140, 1526-1533.
    50.B. Conway, H. Angerstein‐Kozlowska, M. Sattar and B. Tilak, J. Electrochem. Soc., 1983, 130, 1825-1836.
    51.D. Harrington and B. Conway, Journal of electroanalytical chemistry and interfacial electrochemistry, 1987, 221, 1-21.
    52.B. Conway, L. Bai and D. Tessier, Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 161, 39-49.
    53.J. Saxena, K. Butler, V. Jayaram, S. Kundu, N. Arvind, P. Sreeprakash and M. Hachinger, in International test conference, 2003, pp. 1098-1104.
    54.F. MANSFELD, Corrosion, 1976, 32, 143-146.
    55.A. H. Ajami, K. Banerjee, A. Mehrotra and M. Pedram, in Quality Electronic 115 Design, 2003. Proceedings. Fourth International Symposium on, IEEE, 2003, pp. 35-40.
    56.D. McCumber, Journal of Applied Physics, 1968, 39, 3113-3118.
    57.F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 1982, 38, 570-580.
    58.F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 1982, 38, 478-485.
    59.M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy, Wiley-Interscience, 2011.
    60.K. Jüttner, Electrochimica Acta, 1990, 35, 1501-1508.
    61.F. Mansfeld, Journal of Applied Electrochemistry, 1995, 25, 187-202.
    62.A. Gürses, S. Karaca, Ç. Doğar, R. Bayrak, M. Açıkyıldız and M. Yalçın, J Colloid Interf Sci, 2004, 269, 310-314.
    63.D. Langmuir, P. Hall and J. Drever, Environmental Geochemistry, Englewood Cliffs: Prentice-Hall, 1997.
    64.O. Franke, G. Schulz-Ekloff, J. Rathouský, J. Stárek and A. Zukal, Journal of the Chemical Society, Chemical Communications, 1993, 724-726.
    65.王浩静, 王红飞, 李东风, 朱星明, 贺福 and 王心葵, 新型炭材料, 2005, 20, 157-163.
    66.H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, May 1974., 1974, 1, 992.
    67.W. Bond, Acta Crystallographica, 1960, 13, 814-818.
    68.A. Patterson, Physical review, 1939, 56, 978.
    69.A. W. Burton, K. Ong, T. Rea and I. Y. Chan, Micropor. Mesopor. Mat., 2009, 117, 75-90.
    70.U. Holzwarth and N. Gibson, Nature Nanotechnology, 2011, 6, 534-534.
    71.Chang Hyuck Choi and Min Wook Chung, Phys. Chem. Chem. Phys., 2013, 15, 1802
    72.Leiyu Feng and Yinguang Chen, ACS Nano, 2011, 5, 9611-9618
    73.Sheng Chen and Jiyu Bi, Adv. Mater., 2012, 24,5593-5597.
    74.Nanda Gopal Sahoo and Yongzheng, Adv. Mater., 2012, 24, 4203-4210.
    75.Ji Liang and Yan Jiao, Angew. Chem. Lnt. Ed, 2012, 51, 11496-11500.
    76.Beidou Guo and Liang Fang, Insciences J., 2011, 12, 80-89.
    77.Leiyu Feng, ACS Nano, 2011, 12, 9611–9618.
    78.Hirotomo Nishihara and Takashi Kyotani, Adv. Mater., 2012, review.
    79.吳千舜 and 諸柏仁, The Chinese Chem. Soc., Taipei, 2004, 62, 123-138.
    80.Huimin Wu and David Wexler, J. Solid State Electrochem, 2012, 16, 1105-1110.
    81.A. Leela Mohana Reddy and S. Ramaprabhu, J. Phys. Chem. C, 2007, 111, 16138-16146.
    82.M. Sakthivel and A. Schlange, J. Power Sources, 2010, 195, 7083.-7089.
    83.J. Prabhuram and X. Wang, J. Phys. Chem. B, 2003, 107, 11057-11064.
    84.O. Yu Ivanshina and M. E. Tamm, Inorg. Mater. 2011, 47, 858-863.
    85.Yuan Yao and Gonghu Li, Environ. Sci. Technol., 2008, 42, 4952-4957.
    86.Kun Tang and Xiaoke, Adv. Mater., 2013, 3, 49-53.
    87.A. Le Viet and M. V. Reddy, J. Phys. Chem. C, 2010, 114, 664-671.
    88.Hong Guo and Dongxue Tian, J. Solid State Chem., 2013, 201, 137-143.
    89.Bruno Scrosati and Jurgen Garche, J. Power Sources, 2010, 195, 2419-2430.
    90.Jianfeng Ye and Wen Liu, J. Am. Chem. Soc., 2011, 133, 933-940.

    下載圖示 校內:2018-02-13公開
    校外:2018-02-13公開
    QR CODE