| 研究生: |
黃勤展 Huang, Chin-Chan |
|---|---|
| 論文名稱: |
高表面積含氮孔洞碳材及孔洞金屬氧化物空心球的合成與應用 Synthesis and Application of Porous Nitrogen-doped Carbon Material and Porous Metal Oxide Hollow Sphere |
| 指導教授: |
林弘萍
Ling, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 氮摻雜 、孔洞碳材 、二氧化鈦 、空心球 |
| 外文關鍵詞: | nitrogen-doped, porous carbon, titanium oxide, hollow sphere |
| 相關次數: | 點閱:121 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為合成各式孔洞材料並發展其運用,共分成三個部分:第一部分是以ZnO為模板並加入動物明膠gelatin以及酚甲醛樹酯PF4161藉由共沉澱法合成高表面積的含氮孔洞碳材(nitrogen-doped porous carbon material),BET表面積約1300 m2g-1,經過微波加熱後N/C ratio約3.6 %,在以LiClO4/PC為電解液的組裝二極式電容器中有良好的電容保留率約65%,比能量密度約為14.8 Wh/kg;另外,將Pt以甲醇還原成奈米粒子分散至此種碳材表面,Pt/N-PC在擔載量8 wt.%Pt時電流已經超越商用觸媒E-TEK。第二部分是合成孔洞TiO2 NPs/CNT材料,利用檸檬酸鈦作為前驅物,可在水相中藉由調整pH值使得二氧化鈦以奈米粒子的方式分散於碳管表面,並能藉由實驗參數控制組成、分散性以及結晶度,TiO2 NPs/CNT作為光觸媒以直接照射太陽光降解高濃度Methylene Blue具有良好的效果;作為鋰電池負極材料則在50 C放電速率時可保持相當好的電容再現性。第三部分是研究以模板法合成孔洞金屬氧化物空心球材料,藉由控制碳空心球模板的大小,來合成不同大小的高表面積氧化鋁、二氧化鋯及二氧化鈦,其BET表面積分別約為180、140、70 m2g-1,將這些孔洞材料作為填充物與液晶混合封裝成metal oxide hollow sphere/LC能增加顯示器的散射區域,例如以二氧化鈦為填充物所封裝成的顯示器,在未施加電壓時,穿透度為10% (純液晶顯示器未施加電壓時穿透度為90%);填充物與液晶分子間的折射率匹配程度則是影響了施加飽和電壓後的穿透度。
There are three major topics discussed in this thesis. In the first part, ZnO nanoparticles, which could be removed by hydrochloric acid, were used as templates blending with gelatin and phenol formaldehyde (PF) to synthesize nitrogen-doped porous carbon (N-PC). The charge-discharge characteristics of N-PC based supercapacitor gave a specific energy density 14.8 Wh/kg, and capacitance retention 65%. In addition, we incorporated Pt nanoparticles over N-PC to prepare Pt/N-PC catalyst. The linear sweep voltammetry for oxygen reduction reaction exhibited that 8 wt. % Pt/N-PC had larger current density than that of the commercial Pt/C (20 wt. %). In the second part, a water-soluble titanium citrate was used to prepare TiO2 NPs dispersed on CNTs by using a sol-gel method. The resulted TiO2 NPs/CNTs composites demonstrated a high-performance toward degradation of methylene blue. In the final part, we discussed the forming mechanism of hollow carbon sphere (HCS) by co-precipitation of silicate and PF. Using HCS as hard template, we synthesized different metal oxide hollow spheres such as Al2O3, ZrO2 or TiO2. After hydrophobic silane modification, the metal oxides would be filled with liquid crystals matrixes to create scattering domain. The resulted electro-optical device demonstrated that opaque state with a light transmittance of c.a. 10~40% up to metal oxides. In addition, the refraction index matching between LC and metal oxides would affect transmittance at a saturated applied voltage.
1.D. H. Everett, Pure Appl. Chem, 1971, 31, 579-638.
2.A. B. Fuertes and D. M. Nevskaia, J. Mater. Chem., 2003, 13, 1843-1846.
3.L. Guo, L. Zhang, J. Zhang, J. Zhou, Q. He, S. Zeng, X. Cui and J. Shi, Chem. Commun., 2009, 0, 6071-6073.
4.C. Liang and S. Dai, Journal of the American Chemical Society, 2006, 128, 5316-5317.
5.Y. Zhang, W.-S. Zhang, A.-Q. Wang, S. Li-Xian, M.-Q. Fan, H.-L. Chu, J.-C. Sun and T. Zhang, International Journal of Hydrogen Energy, 2007, 32, 3976-3980.
6.J. Ding, K.-Y. Chan, J. Ren and F.-s. Xiao, Electrochimica. Acta., 2005, 50, 3131-3141.
7.F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Angewandte Chemie International Edition, 2006, 45, 4467-4471.
8.F. Su, J. Zeng, X. Bao, Y. Yu, J. Y. Lee and X. S. Zhao, Chem. Mater., 2005, 17, 3960-3967.
9.J. Huang, B. G. Sumpter and V. Meunier, Chemistry, 2008, 14, 6614-6626.
10.F. Ide and A. Hasegawa, Journal of Applied Polymer Science, 1974, 18, 963-974.
11.K. Kataoka, Advanced Drug Delivery Reviews, 2001, 113-131.
12.J. Eric Hampsey, Chem. Commun., 2005, 0, 3606-3608.
13.B. Sarkar and P. Alexandridis, J. Phys. Chem. B, 2010, 114, 4485-4494.
14.Si-Han Wu, Chung-Yuan Mou and Hong-Ping Lin, Chem. Soc. Rev., 2013, 42, 3862
15. Chemistry (The Chinese Chem. Soc., Taipei) 2004, 62, 273
16.C. Song and J. Zhang, Electrocatalytic Oxgen Reduction Reaction
17. Yeager E, J. Mol. Catal. 1986, 38, 5–25.
18. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. New York: Wiley, 1980.
19.R. Kötz and M. Carlen, Electrochimica Acta, 2000, 45, 2483-2498.
20.Zhang M, Langmuir 2004, 20, 8781–8785.
21.E. Frackowiak, Journal of Power Sources, 2006, 153, 413-418.
22.Maldonado S, J. Phys. Chem. B, 2005, 109, 4707–4716.
23.Markovic NM, Ross PN. Surface science studies of model fuel cell electrocatalysts.
Surf Sci Rep 2002;45:117–229.
24.Zhdanov VP, Kasemo B. Kinetics of electrochemical O2 reduction on Pt. Electrochem. Commun., 2006, 8, 1132–6.
25.Norskov JK, J. Phys. Chem. B, 2004,108,17886–92.
26.Shi Z, Zhang J, Liu Z, Wang H, Wilkinson DP. Current status of ab initio quantum
chemistry study for oxygen electroreduction on fuel cell catalysts Electrochim Acta,
2006, 51, 1905–1916.
27. Hoare JP, J. Phys. Chem-Us, 1996, 100, 9906-9910.
28.B. Sarkar and P. Alexandridis, J. Phys. Chem. B, 2010, 114, 4485-4494.
29.M. Hartmann, A. Poppl and L. Kevan, J. Phys. Chem-Us, 1996, 100, 9906-9910.
30.A. J. Bard and L. R. Faulkner, “Electrochemical Methods:Fundamentals and Applications”, 2nd Edition, John Wiley & Sons. Inc., Singapore, 1980.
31.胡啟章編著, “電化學原理與方法”, 五南圖書, 2002.
32.田福助編著, “電化學理論與應用”, 第八版, 新科技, 2001.14. G. Lewin, G. Myers, V. Parsonnet and I. Zucker, ASAIO Journal, 1967, 13, 345-349.
33.R. Kötz and M. Carlen, Electrochimica Acta, 2000, 45, 2483-2498.
34.V. Peykov, A. Quinn and J. Ralston, Colloid and Polymer Science, 2000, 278, 789-793.
35.A. Bourdon, V. Pasko, N. Y. Liu, S. Célestin, P. Ségur and E. Marode, Plasma Sources Science and Technology, 2007, 16, 656.
36.R. J. Crawford, I. H. Harding and D. E. Mainwaring, J Colloid Interf Sci, 1996, 181, 561-570.
37.D. E. Yates, S. Levine and T. W. Healy, J. Chem. Soc., Faraday Trans. 1, 1974, 70, 1807-1818.
38.K. B. Oldham, J. Electroanal Chem., 2008, 613, 131-138.
39.K. Xu, Y. Lam, S. S. Zhang, T. R. Jow and T. B. Curtis, The Journal of Physical Chemistry C, 2007, 111, 7411-7421.
40.R. W. Impey, M. Sprik and M. L. Klein, Journal of the American Chemical Society, 1987, 109, 5900-5904.
41.J. Prue and P. Sherrington, Transactions of the Faraday Society, 1961, 57, 1795-1808.
42.E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota and F. Beguin, Journal of Power Sources, 2006, 153, 413-418
43.G. Lewin, G. Myers, V. Parsonnet and I. Zucker, ASAIO Journal, 1967, 13, 345-349.
44.J. Gamby, P. Taberna, P. Simon, J. Fauvarque and M. Chesneau, Journal of power sources, 2001, 101, 109-116.
45.D. Qu and H. Shi, Journal of Power Sources, 1998, 74, 99-107.
46.L. Nadjo and J. Savéant, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1973, 48, 113-145.
47.K. Aoki, K. Akimoto, K. Tokuda, H. Matsuda and J. Osteryoung, Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 171, 219-230.
48.C. Amatore and J. Savéant, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 85, 27-46.
49.M. Doyle, T. F. Fuller and J. Newman, J. Electrochem. Soc., 1993, 140, 1526-1533.
50.B. Conway, H. Angerstein‐Kozlowska, M. Sattar and B. Tilak, J. Electrochem. Soc., 1983, 130, 1825-1836.
51.D. Harrington and B. Conway, Journal of electroanalytical chemistry and interfacial electrochemistry, 1987, 221, 1-21.
52.B. Conway, L. Bai and D. Tessier, Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 161, 39-49.
53.J. Saxena, K. Butler, V. Jayaram, S. Kundu, N. Arvind, P. Sreeprakash and M. Hachinger, in International test conference, 2003, pp. 1098-1104.
54.F. MANSFELD, Corrosion, 1976, 32, 143-146.
55.A. H. Ajami, K. Banerjee, A. Mehrotra and M. Pedram, in Quality Electronic 115 Design, 2003. Proceedings. Fourth International Symposium on, IEEE, 2003, pp. 35-40.
56.D. McCumber, Journal of Applied Physics, 1968, 39, 3113-3118.
57.F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 1982, 38, 570-580.
58.F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 1982, 38, 478-485.
59.M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy, Wiley-Interscience, 2011.
60.K. Jüttner, Electrochimica Acta, 1990, 35, 1501-1508.
61.F. Mansfeld, Journal of Applied Electrochemistry, 1995, 25, 187-202.
62.A. Gürses, S. Karaca, Ç. Doğar, R. Bayrak, M. Açıkyıldız and M. Yalçın, J Colloid Interf Sci, 2004, 269, 310-314.
63.D. Langmuir, P. Hall and J. Drever, Environmental Geochemistry, Englewood Cliffs: Prentice-Hall, 1997.
64.O. Franke, G. Schulz-Ekloff, J. Rathouský, J. Stárek and A. Zukal, Journal of the Chemical Society, Chemical Communications, 1993, 724-726.
65.王浩静, 王红飞, 李东风, 朱星明, 贺福 and 王心葵, 新型炭材料, 2005, 20, 157-163.
66.H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, May 1974., 1974, 1, 992.
67.W. Bond, Acta Crystallographica, 1960, 13, 814-818.
68.A. Patterson, Physical review, 1939, 56, 978.
69.A. W. Burton, K. Ong, T. Rea and I. Y. Chan, Micropor. Mesopor. Mat., 2009, 117, 75-90.
70.U. Holzwarth and N. Gibson, Nature Nanotechnology, 2011, 6, 534-534.
71.Chang Hyuck Choi and Min Wook Chung, Phys. Chem. Chem. Phys., 2013, 15, 1802
72.Leiyu Feng and Yinguang Chen, ACS Nano, 2011, 5, 9611-9618
73.Sheng Chen and Jiyu Bi, Adv. Mater., 2012, 24,5593-5597.
74.Nanda Gopal Sahoo and Yongzheng, Adv. Mater., 2012, 24, 4203-4210.
75.Ji Liang and Yan Jiao, Angew. Chem. Lnt. Ed, 2012, 51, 11496-11500.
76.Beidou Guo and Liang Fang, Insciences J., 2011, 12, 80-89.
77.Leiyu Feng, ACS Nano, 2011, 12, 9611–9618.
78.Hirotomo Nishihara and Takashi Kyotani, Adv. Mater., 2012, review.
79.吳千舜 and 諸柏仁, The Chinese Chem. Soc., Taipei, 2004, 62, 123-138.
80.Huimin Wu and David Wexler, J. Solid State Electrochem, 2012, 16, 1105-1110.
81.A. Leela Mohana Reddy and S. Ramaprabhu, J. Phys. Chem. C, 2007, 111, 16138-16146.
82.M. Sakthivel and A. Schlange, J. Power Sources, 2010, 195, 7083.-7089.
83.J. Prabhuram and X. Wang, J. Phys. Chem. B, 2003, 107, 11057-11064.
84.O. Yu Ivanshina and M. E. Tamm, Inorg. Mater. 2011, 47, 858-863.
85.Yuan Yao and Gonghu Li, Environ. Sci. Technol., 2008, 42, 4952-4957.
86.Kun Tang and Xiaoke, Adv. Mater., 2013, 3, 49-53.
87.A. Le Viet and M. V. Reddy, J. Phys. Chem. C, 2010, 114, 664-671.
88.Hong Guo and Dongxue Tian, J. Solid State Chem., 2013, 201, 137-143.
89.Bruno Scrosati and Jurgen Garche, J. Power Sources, 2010, 195, 2419-2430.
90.Jianfeng Ye and Wen Liu, J. Am. Chem. Soc., 2011, 133, 933-940.