| 研究生: |
蔡旭庭 Tsai, Hsu-Ting |
|---|---|
| 論文名稱: |
基因重組人類Smad4蛋白之表現優化與功能分析 Expression optimization and functional analysis of recombinant human Smad4 protein |
| 指導教授: |
蕭世裕
Shaw, Shyh-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 乙型轉型生長因子-1 、基質金屬蛋白酶 、強力黴素 、表現優化 、Smad4蛋白 |
| 外文關鍵詞: | TGF-β, MMP-9, doxycycline, expression optimization, Smad4 protein |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據許多研究指出口腔鱗狀細胞癌(Oral squamous cell carcinoma, OSCC)的轉移與基質金屬蛋白酶-9(Matrix metalloproteinase-9, MMP-9)的表現有高度相關,此外,在臨床上,病人身上的基質金屬蛋白酶高度表現會促進癌細胞的侵襲與遷移。
在實驗室的過去研究裡,指出在口腔鱗狀細胞癌之細胞株中發現到乙型轉型生長因子-1(Transforming Growth Factor-β1)會經由Smad3/Smad4蛋白形成三聚體,並且進入細胞核且誘導MMP-9基因的表現。另外發現到四環黴素(Tetracycline)類型的強力黴素(Doxycycline, Dox)會經由Smad4蛋白來抑制TGF-β引起的MMP-9基因表現、經由電泳流動遷移分析(electrophoresis mobility shift analysis, EMSA)證實來自管柱純化得到的Smad4蛋白具備與DNA結合的功能,最後經由表面電漿共振(surface plasma resonance, SPR)證實純化後的Smad4蛋白會與Dox有顯著的交互作用。
我們想更進一步地觀察Smad4蛋白與Dox的共結晶,大量的Smad4蛋白是必需的。然而,在使用凝血酶(thrombin)切割GST-Smad4蛋白時,面臨結構上的立體障礙,因此無法在適當的溫度條件下,拿掉GST-tag (glutathione-S-transferase)。即便提升溫度到37℃與增加用量來改善切割效率,但GST-Smad4蛋白不可避免地會受到嚴酷溫度(37℃)反應而引發降解,使得蛋白回收產率不佳。
因此,為了凝血酶(38kDa)能克服GST(26kDa)與Smad4(61kDa)之間立體障礙,更能夠有效的在和條件下分離GST與Smad4蛋白,我們在表現質體上Smad4基因與GST基因之間,利用DNA cloning方式嵌入一小段Linker,解決立體障礙的問題。
在本實驗中,比起過去的研究,我們成功地優化了表現載體、立體障礙、破菌方法、管柱選擇、凝血酶的條件優化,來克服過去研究中產率不佳的問題。
然而,在Smad4的功能分析上,我們利用電泳流動遷移分析實驗,觀察Smad4蛋白與Smad-binding element之間的交互作用,但沒有觀察到交互作用的現象。因此,未來仍需要用SPR實驗觀察Smad4蛋白與Doxycycline來證實本研究Smad4的功能性。
Head and Neck squamous cell carcinoma (HNSCC) is the sixth most common cause of cancer-related death in western societies and responsible for half a million deaths worldwide per year. Oral squamous cell carcinoma (OSCC) is a part of HNSCC. Then tumor metastasis is still the primary cause of death in cancer patients. In lots of studies, they indicated that OSCC cancer metastasis is highly relevant to matrix metalloproteinase-9 (MMP-9).
In our previous study, there was a data indicating that transforming growth factor-β (TGF-β) induced MMP-9 expression through Samd4 protein in OSCC cell line. Besides, we also acquired the purified Smad4 protein, observed the interaction between Smad4 protein and doxycycline via surface plasma resonance (SPR) biosensor and confirmed the function of Smad4 protein by electrophoresis mobility shift analysis (EMSA). However, in the process of purified Smad4 protein, we faced the challenge of the structural steric-hindrance on the cleavage of GST-Smad4 by thrombin. Despite of raising the temperature to improve cleaved efficiency at 37℃, it could not still escape from temperature-induced protein degradation so as to make the yield drop.
In this study, we want to thoroughly optimize cleavage efficiency of thrombin and raise the yield on GST-Smad4 for further purification of Smad4. Therefore, we tried to insert a DNA linker between GST gene and Smad4 gene by molecular cloning to allow that thrombin can cleave on GST-Smad4 protein structurally. At length, compared with past study, we successfully optimized the plasmid construct, rupture method, steric-hindrance, thrombin on the optimal conditions and the increase in yield.
However, on functional analysis of Smad4 protein, we observed the interaction between SBE element and Smad4 protein by EMSA analysis, the interaction results were not seen from the gel. In future, we will still confirm the Smad4 function by using SPR biosensor to observe the interaction between Smad4 and Doxycycline.
1.Leemans, C. R., Braakhuis, B. J. R., and Brakenhoff, H., The molecular biology of head and neck cancer. Nature Review Cancer 11, 9-22 (2011).
2.S, Warnakulasuriya., Global epidemiology of oral oropharyngeal cancer. Oral Oncology 45, 309-316 (2009).
3.V. M van Houten et al., Molecular diagnosis of head and neck cancer. Recent Results Cancer Research 157, 90-106 (2000).
4.Yin-Ju Chen et al., Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Science 1507-14 (2008).
5.Chaffer, C. L, and Weinberg, R. A., A perspective on cancer cell metastasis. Science 6024, 1559-64 (2011).
6.Lauren, A. K. et al., Molecular biology of bone metastasis. Molecular Cancer Therapeutics (2007).
7.Patel, B. P. et al., Activation of MMP-2 and MMP-9 in patients with oral squamous cell carcinoma. Journal of Surgical Oncology 90,81-88 (2005)
8.Grossman T. H. et al., Tetracycline antibiotic and Resistance. Cold Spring Harb Perspect Med, 6(4):a025387 (2016).
9.Daghrir, R. and P, Drogui., Tetracycline antibiotics in the environment: a review. Environmental chemistry letters, 11(3): 209-227 (2013).
10.Agwuh, K.N. and A. Mac Gowan, Pharmacokinetics and pharmacodynamics of the tetracycline including glycylcycline. Journal of Antimicrobial Chemotherapy, 58(2): 256-265 (2006).
11.Moazed, D. G., and Noller, H. F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327,389-394 (1987).
12.Van Werkhoven C. H. et al., Atypical coverage in community-acquired pneumonia after outpatient beta-lactam monotherapy. Respiratory Med, 129:145-151 (2017).
13.De Roche M, Sawatzki, M., Degen, L., Itin, P., Flückiger, U., Frei R., Goldenberger, D., Lymphogranuloma venereum., An old disease in a new dress. Internist (Berl). 52(5):584-9 (2011).
14.Moore, A., Green, L. J., Bruce, S. et al., Once-Daily Oral Sarecycline 1.5 mg/kg/day Is Effective for Moderate to Severe Acne Vulgaris: Results from Two Identically Designed, Phase 3, Randomized, Double-Blind Clinical Trials. J Drugs Dermatology. 17(9):987-996 (2018).
15.Ramamurthy, N. S., Zebrowski, E. J., and Golub, L. M. The effect of alloxan diabetes on gingival collagen metabolism in rats. Archives of Oral biology. 17,1551,-1560 (1972).
16.Golub, L. M., Lee, H. M., Lehrer, G., Nemiroff, A., McNamara, T. F., Kaplan R., and Ramamurthy N.S. Minocycline reduced gingival collagenolytic activity during diabetes. Preliminary observations and a proposed new mechanism of action. Journal of Periodontal Research 18,516-526 (1983).
17.Ingman, T., Sorsa T., Suomalainen, K., Halinen, S., Lindy, O., Lauhio, A., Saari H., Konttinen, Y. T., Golub, L. M. Tetracycline inhibition and the cellular source of collagenase in gingival crevicular fluid in different periodontal diseases. A review article. Journal of Periodontology. 64(2):82-8 (1993).
18.Golub, L. M., Ramamurthy, N. S., McNamara, T. F., Greenwald, R. A., Rifkin, B. R. Tetracycline inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Critical Reviews in Oral Biology and Medicine 2,297-321 (1991).
19.沈領昌。基質金屬蛋白酶在口腔腫瘤之研究,博士論文。國立成功大學-生物科技研究所博士班 (2010)。
20.陳和儒。四環黴素類藥物抑制金屬基質蛋白酶表現和癌細胞生長研究,碩士論文。國立成功大學化學系碩士班 (2011)。
21.林志強。四環黴素抑制口腔鱗狀癌細胞內基質金屬蛋白酶-9表現量之抑制機制的研究,碩士論文。國立成功大學生物科技研究所碩士班 (2013)。
22.Griffin M.O., Fricosky, E., Ceballo,s G., and Villarreal, F., Tetracycline: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. American Journal of Cell Physiology. 299,C359-C548 (2010).
23.Vaalomo, Maarit., Matrix Metalloproteinases and Their Inhibitors in Normal and Aberrant Wound Repair : Expression patterns of collagenases-1 and -3, stromelysins-1 and -2, matrilysin, metalloelastase and TIMPs-1, -2, -3 and -4 in healing cutaneous wounds and in chrome ulcers of the skin and the intestine. Doctoral dissertation. University of Helsinki, Faculty of Medicine, Institute of Clinical Medicine (2000).
24.Rosa, S., Transforming growth factor beta: role in cell growth and differentiation. Encyclopedia of life Science John Wiley& Sons Ltd (2002).
25.Sulsal Haquea and John C. Morris., Transforming growth factor-b: A therapeutic target for cancer. Human vaccines and Immunotherapeutics. 13-8, 1741–1750 (2017).
26.Frank Schäfer, Nicole Seip, Barbara Maertens, Helena Block, and Jan Kubicek., Chapter Nine - Purification of GST-Tagged Proteins. Methods in Enzymology 559, 127-139 (2015).
27.Roberts, A. B., Anzano, M. A., Lamb, L. C., Smith, J. M., and Sporn M. B., New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proceedings of the National Academy of Science of the United States of American. 78, 5339-5343 (1981).
28.Feng Xie, Li Ling, Hans van Dam, and Fangfang Zhou., TGF-β signaling in cancer metastasis. Acta Biochimica et Biophysica Sinica, 50-1, 121–132 (2018).
29.Villar, L., Kocic, J., Santibanez, J. F., Skip regulates TGF-β1-induced extracellular matrix degrading proteases expression in human PC-3 prostate cancer cells. Prostate Cancer Hindawi Publishing Corporation (2013).
30.Massagué, J., TGFβ signalling in context. Nature Review Molecular Cell Biology. 13(10) : 616-30 (2012).
31.Blobe, G. C., Schiemann, W. P., Lodish, H. F., Role of transforming growth factor beta in human disease". New England Journal Medicine. 342 (18): 1350–8 (2000).
32.Van Lint P., Libert, C., Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. Journal of Leukocyte. Biology. 82 (6): 1375–81 (2007).
33.Georgescu, E.F., Mogoantă, S.Ş., Costache, A., Pârvănescu, V., Totolici, B.D., Pătraşcu, Ş., Stănescu, C., The assessment of matrix metalloproteinase-9 expression and angiogenesis in colorectal cancer. Rom J Morphol Embryol 56:1137–1144 (2015).
34.Zheng, C.G., Chen, R., Xie J.B., Liu, C.B., Jin, Z., Jin, C., Immunohistochemical expression of Notch1, Jagged1, NF-κB and MMP-9 in colorectal cancer patients and the relationship to clinical-pathological parameters. Cancer Biomarker 15:889–897 (2015).
35.Zhao, F., Evans, K., Xiao, C., DeVito, N., Theivanthiran, B., Holtzhausen A., Siska, P. J., Blobe. G.C., Hanks. B.A., Stromal Fibroblasts Mediate Anti-PD-1 Resistance via MMP-9 and Dictate TGFβ Inhibitor Sequencing in Melanoma. Cancer Immunology Research. 6(12):1459-1471 (2018).
36.Joan Massagué, Joan Seoane, and David Wotton, Smad transcription factors. Gene & Development 19:2783–2810 (2005).
37.Alexander Peter William Weiss, and Liliana Attisano., The TGF-beta superfamily signaling pathway. Wiley Interdisciplinary Reviews: Developmental Biology. 2:47-63 (2003).
38.Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H., and Gelbart, W. M., Geneetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics. 139, 1347-1358 (1995).
39.Savaged, C., Das, P., Finelli, A. L., Townsend, S.R., Sun, C. Y., Baired, S. E., and Padgett, R. W., Caenorhabditis Elegans genes Sma-2, Sma-3, and Sma-4 define a conserved family of TGF-beta pathway components. Proc Natl. Acad. Sci. 93, 790-794 (1996).
40. Heldin, C. H., Souchelnytskyi, S., Tamaki, K., Engstrom, U., Wernstedt, C., Ten, Dijke., Phsphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. Journal of Biological Chemistry. 272, 20107-28115 (1997).
41.Massagué, J., TGF-β signal transduction. Annual Review of Biochemistry. 67, 753-791 (1998).
42.Baker, J. C., and Harland, R. M., A novel mesoderm inducer, Madr2, functions in the activing signal transduction pathway. Gene Dev. 10, 1880-1889 (1996).
43.Eppert, K. et al., MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 86, 543-552 (1996).
44.Graff, J. M., Bansal, A., and Melton, D. A., Xenopus Mad proteins transduce distinct subsets of signal for the TGFβ superfamily. Cell 85, 479-487 (1996).
45.Hoodless, P. A., Haerry, T., Abdollah, S., Stapleton, M., O’Connor, M. B., Attisano L., and Wrana J. L., MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell. 85, 489-500 (1996).
46.Lagna, G., Hata, A., Hemmanti, B. A., and Massagué, J., Partnership between DPC4 and SMAD proteins in TGFβ signaling pathways. Nature. 383, 832-836 (1996).
47.Wu, R. Y., Zhang, Y., Feng, X. H., and Derynck, R., Heteromeric and homemeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Molecular Cell Biology. 17, 2581-2528 (1997).
48.Zhang, Y., Musci, T., and Derynck, R., The tumor suppressor Smad4/DPC4 as a central mediator of Smad function. Current Biology. 7, 270-276 (1997).
49.Singh, P., Wig, J. G., Srinivasan, R., The Smad family and its role in pancreatic cancer. Indian Journal of Cancer. 48, 351-359 (2011).
50.Qin, B.Y., Lam, S.W., and Lin, K., Crystal structure of a transcriptionally active Smad4 fragment. Structure. 15; 7 (12):1493-503 (1999).
51.Shi, Y., Hata, A., Massagué, J., Pavletich, N. P., A structure basis for mutational inactivation of the tumor suppressor Smad4. Nature. 388, 87-93 (1997).
52.Lenka Kubiczkova, Lenka Sedlarikova, Roman Hajek and Sabina Sevcikova, TGF-β – an excellent servant but a bad master. Journal of Translational Medicine. 10, Article number: 183 (2012).
53.Yan, X., Liao, H., Cheng, M., Shi, X., Lin, X., Feng, X. H., and Chen, Y. G., Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor-β (TGF-β)/Smad Signaling. The Journal of Biological Chemistry. 291(1) : 382-92 (2016).
54.Hata, A., Lagna, G., Massagué, J., and Hemmati-Brivanlou, A., Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes and Development. 12: 186-197 (1998).
55.Cook, T., and Urruitia, R., TIEG proteins join the Smads as TGF-β-regulated transcription factors that control pancreatic cell growth. American Journal of Gastrointestinal Liver Physiology. 278, G513-21 (2000)
56.Fink, S. P., Mikklola,D., Willson, J. K.,Markowitz, S. TGF-β-induced nuclear localization of Smad2 and Smad3 in Smad4-null cancer cell lines. Oncogene. 22, 1317-1323 (2003).
57.IJsbrand M. Kramer., TGFβ and Signaling through Receptor Serine/Threonine Protein Kinases. Signal Transduction-Third Edition (2016).
58.Letterio, John J., TGF-β signaling in T cells: roles in lymphoid and epithelial neoplasia. Oncogene. 24 (37): 5701–5712 (2005).
59.Nguyen, H. L., Kadam, P., Helkin, A., Cao, K., Wu, S., Samara, G. J., Zhang, Q., Zucker, S., Cao, J., MT1-MMP Activation of TGF-β Signaling Enables Intercellular Activation of an Epithelial-mesenchymal Transition Program in Cancer. Current Cancer Drug Targets. 16(7):618-30 (2016).
60.Derynck, R., and Zhang, Y. E., Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature. 425(6958):577-84 (2003).
61.Liu, P., Zhu, L., Zou, G., Ke, H., Matrine Suppresses Pancreatic Fibrosis by Regulating TGF-β/Smad Signaling in Rats. Yonsei Medical Journal. 60(1):79-87 (2019).
62.Zhou, Y., Ji, J., Ji, L., Wang, L., Hong, F., Respiratory exposure to nano-TiO2 induces pulmonary toxicity in mice involving reactive free radical-activated TGF-β/Smad/p38MAPK/Wnt pathways. Journal of Biomedical Material Research. 107(11):2567-2575 (2019).
63.Atfi, A., Djelloul, S., Chastre, E., Davis, R., and Gespach, C., Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor beta-mediated signaling. The Journal of Biological Chemistry. 17; 272(3): 1429-1432 (1997).
64.Nomikou, E., Livitsanou, M., Stournaras, C., Kardassis, D., Transcriptional and post-transcriptional regulation of the genes encoding the small GTPases RhoA, RhoB, and RhoC: implications for the pathogenesis of human diseases. Cell and Molecular Life Science. 75(12) : 2111-2124 (2018).
65.Zhang, Y. E., Non-Smad pathways in TGF-beta signaling. Cell Research. 19(1) : 128-39 (2009).
66.Lee, T., Mechanical and Mechanosensing Properties of Tumor Affected Bone Cells Were Inhibited via PI3K/Akt Pathway. Journal of Bone Metabolism. 26(3) : 179-191 (2019).
67.Martin-Malpartida, P., Batet, M., Kaczmarska, Z., Freier, R., Gomes, T., Aragon, E., Zou, Y., Wang, Q., Xi, Q., Ruiz, L., Vea, A., Marquez, J. A., Massague, J., and Macias, M. J. Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors. Nature Communication. 12; 8(1): 2070 (2017).
68.John, V. Frangioni., and Benjamin, G. Neel., Solubilization and Purification of Enzymatically Active Glutathione S-Transferase (pGEX) Fusion Proteins. Analytical Biochemistry. 210,179-187 (1993).
69.Funaba, M., and Mathew, L. S., Recombinant Expression and Purification of Smad Proteins. Protein Expression and Purification. 20, 507-513 (2000).
70.張文馨。基因重組人類Smad4蛋白脂表現與功能分析,碩士論文。國立成功大學化學系碩士班 (2015)。
71.Marcia, R. Cominetti., Ana Carolina, B.M. Martin., Juliana, U. R., Ibtissem, Djaafri., Françoise Fauvel-Lafe`ve., Michel, Cre´ pin., and Heloisa S, Selistre-de-Araujo., Inhibition of platelets and tumor cell adhesion by the disintegrin domain of human ADAM9 to collagen I under dynamic flow conditions. Biochimie. 91, 1045–1052 (2009).
72.Byung Hak Ha a., Ki Joon Cho a,, Yu Jin Choi b., KyYoung Park b., and Kyung Hyun Kim., Characterization of arginine decarboxylase from Dianthus caryophyllus. Plant Physiology and Biochemistry. 42, 307–311 (2004).
73.Zhenwen Zhou. el al., Molecular cloning and identification of a novel Clonorchis sinensis gene encoding a tegumental protein. Parasitology Research. 101:737–742 (2007).
74.SONG Hui-juan. ,LI Hong-dan., WEI Jia., and SU Rong jian., Prokaryotic expression, purification and antigenicity identification of human GRP78 protein. Chinese Journal of Cell and Molecular Immunology. 27(10), 1079-1082 (2011).
75.Keke Zhang., Mei Huang., Jiangshan Ma., Zeyi Liu., Jiarui Zeng., Xuanming Liu., Ting Xu., Xiang Wang., Ying Liu., Zhigang Bu., and Yonghua Zhu., Identification and characterization of a novel bacterial pyranose 2-oxidase from the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnology Letter. 40(5) : 871-880 (2018).
76.Baneyx, F., Recombinant protein expression in Escheria coli. Current Opionion in Biotechnology. 10, 411-421 (1999).
77.Wilkinson, D. L., and Roger, G. H., Predicting the solubility of recombinant proteins in Escherichia coli. Nature Biotechnology. 9, 443-448 (1991).
78.Harper, S., and Speicher, D. W., Purification of proteins fused to glutathione S-transferase. Methods in molecular biology. 681, 259-80 (2011).
79.Harper, S., and Speicher, D. W., Expression and purification of GST fusion proteins. Current Protocol in protein science. Ch16, Unit 16.7 (2001).
80.Riccio, A., Pedone, P., Lund, L., Olesen, T., Steen, O. H., and Andreasen, P., TGFβ1 responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor- Nuclear factor 1 in the type 1 plasminogen activator inhibitor gene. Molecular cell biology. 12,1846-1855 (1992).
81.Inagaki, Y., Truster, S., and Ramirenz, F., TGFβ stimulates α2(I) collagen gene expression through a cis-acting element that contains an Sp1-binding site. Journal of Biological Chemistry. 269, 14828-14834 (1994).
82.Zhang, Y., Feng, X. H., Wu, R. Y., and Derynck, R., Receptor-associated Mad homologous synergize as effectors of the TGFβ response. Nature. 383, 168-172 (1996).
83.Nakao, A., Imamura, T., Souchelnytskyi, S., Kawabata, M., Ishisaki, A., Odeta, E., Tamaki, K., Hanai, J. I., Heldin, C. H., Miyazono, K., and Dijke, P. T., TGF-β receptor-mediated signaling through Smad2, Smad3 and Smad4. Embo Journal, 16, 5353-5362 (1997).
84.Gauthier, J. M., Dennler, S., Itoh, S., Vivien, D., Dijke, P. T., and Huet, S., Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. Embo Journal, 17, 11, 3091-3100 (1998).
85.Zawel, L., Dai, J. L., Buckhaults, P., Zhou, S., Kinzler, K. W., Vogelstein, B., and Kern S. E., Human Smad3 and Smad4 Are Sequence-Specific Transcription Activators. Molecular cell. 1(4):611-617 (1998).