簡易檢索 / 詳目顯示

研究生: 李宜蓁
Lee, Yi-Chen
論文名稱: 以虛實整合為基礎建構營建工程之人機協作系統 — 以噴漆作業為例
Developing the HRC System Based on the Cyber-Physical Environment of the Construction Projects: A Case Study of Spray-Painting Operations
指導教授: 馮重偉
Feng, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 116
中文關鍵詞: 建築資訊模型點雲虛實整合人機協作
外文關鍵詞: BIM, Point Cloud , Cyber-Physcial, Human-robot collaboration
相關次數: 點閱:48下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 營建工程面臨著日益增長的工業需求,傳統的人力勞動已無法應對,因此引入自動化機器人成為提高生產效率和品質的解決方案。然而施工環境的多樣性和不確定性,使機器人在營建工地的應用面臨著挑戰。為了克服這些挑戰,需要利用BIM(建築資訊模型)提供的精確數據和準確性,使機器人能夠更好地應對各種施工環境,提高施工效率和品質。傳統的測量方法耗時費力,然而,點雲掃描技術可以快速、高效地收集空間數據並生成 3D 模型,尤其對於噴漆機器人的應用,點雲資料和 BIM 資訊可為機器人的任務規劃提供重要訊息,但如何將這些資訊與機器人協作仍然是個挑戰。近年來,延展實境技術結合虛擬和實際環境,為機器人協作系統提供新的可能性,在解決點雲 BIM 資訊和噴漆機器人協作的問題時,需要進一步探討延展實境技術在工地噴漆機器人協作中的應用。

    本研究為改善 BIM 資訊未能完成呈現營建工地之現場情況以及難以引入自動化機器人的問題,以噴漆作業為例,解析噴漆工程於工地現場之人機協作需求,了解工程現地施作噴漆流程與噴漆作業控制因子,探討影響噴漆流程與成果的因素,歸納出混合實境模式下人機協作所需的資訊與操作需求,利用光達掃描儀獲得的點雲和建築資訊模型建構一虛實整合模擬環境,將此模擬環境導入混合實境開發環境,再建立機器人控制系統結合噴塗作業路徑自動化生成系統。同時,結合前述內容,開發出使用混合實境技術的人機協作功能,並應用於施工現場進行機器人施作規劃。該系統可將機器人控制系統與混合實境裝置進行遠端連線,從而將控制指令發佈至桌上型機械手臂,建築資訊模型於其中提供各項物件資訊,以輔助噴漆作業規劃透過虛實整合與人機協作,可提高噴漆作業的效率和準確性,同時減少人為錯誤和潛在的安全風險。

    Currently, industrial robots face challenges in construction sites due to the diverse nature and high uncertainty of construction tasks. Building Information Modeling (BIM) also faces difficulties in being effectively applied on-site. To enhance the potential of applying BIM and industrial robots in construction settings, this study focuses on the analysis of human-robot collaboration requirements in spray painting operations. The study aims to understand the on-site spray painting process and control factors, as well as identify the factors that affect the process and outcomes of spray painting. By summarizing the information and operational requirements for human-robot collaboration in a mixed reality mode, a simulated environment is created by integrating point clouds obtained from a laser scanner with the BIM. This simulated environment is then incorporated into a mixed reality development environment, where a robot control system is established to generate automated spray painting paths. Additionally, the study develops human-robot collaboration functionalities using mixed reality technology and applies them to robot planning in construction sites. The system enables remote connection between the robot control system and mixed reality devices, allowing control instructions to be sent to the desktop robotic arm. The BIM provides coordinates and object information to assist in spray painting operation planning. Through the integration of virtual and real elements and human-robot collaboration, efficiency and accuracy in spray painting operations can be improved while reducing human errors and potential safety risks.

    中文摘要 I Abstract II 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 4 1.4 研究流程 5 1.5 論文架構 7 第二章 問題陳述與文獻回顧 8 2.1 研究問題陳述 8 2.1.1 營建機器人需人力配合指示 8 2.1.2 BIM 無法完整呈現工地實際情況 9 2.1.3 BIM 與點雲於現地噴漆工程上應用能力不足 10 2.2 人機協作技術應用於施工之發展現況 11 2.3 點雲模型與建築資訊模型之發展現況 14 2.4 數位雙生技術於營建工程之發展現況 17 2.5 小結 21 第三章 研究方法及工具 23 3.1 需求分析工具 24 3.2 點雲模型建模工具 25 3.2.1 Autodesk Revit 25 3.2.2 Leica BLK2GO 26 3.2.3 Cyclone Register 360 27 3.2.4 CloudCompare 28 3.3 機器人系統開發工具 28 3.3.1 Robot Operating System (ROS) 29 3.3.2 MoveIt! 29 3.3.3 Unity-Robotics-Hub 31 3.3.4 WLkata Mirobot 32 3.4 混合實境開發工具 33 3.4.1 Unity 34 3.4.2 Mixed Reality Toolkit(MRTK) 35 3.4.3 Microsoft Visual Studio 36 3.4.4 Microsoft HoloLens 2 37 第四章 基於虛實整合及人機協作噴漆機器人控制系統 38 4.1 研究架構 38 4.2 解析工程現地噴漆工程之人機協作需求 41 4.2.1 解析工程現地施作噴漆流程與噴漆作業控制因子41 4.2.2 解析噴漆作業之機械手臂控制需求 44 4.2.3 解析混合實境模式下人機協作所需資訊與操作需求 48 4.3 結合點雲與 BIM 建構虛實整合之模擬環境 50 4.3.1 BIM 模型建構規則 50 4.3.2 BIM 提取施作相關資訊 51 4.3.3 建置點雲與 BIM 虛實整合模擬環境 52 4.4 噴漆作業路徑自動化生成系統 54 4.4.1 建置模擬自動化機器人噴漆系統 55 4.4.2 開發 ROS 相關的機器人自動噴塗任務演算法 59 4.4.3 ROS 通訊架構 63 4.5 開發虛實整合之 MR 人機協作功能 67 4.5.1 ROS 系統與 Unity 間之連接和通訊 67 4.5.2 建立 MR 應用程式架構 70 4.5.3 虛實整合為基礎之人機協作作業流程 77 4.6 小節 79 第五章 案例驗證 80 5.1 案例介紹 80 5.1.1 實驗環境及限制 81 5.1.2 實驗機器人設備 81 5.2 虛實整合之模擬環境模型導出 82 5.3 開發 MR 專案與應用程式封裝 84 5.4 現地噴漆作業流程與模擬 87 5.5 模擬結果分析 91 第六章 結論與建議 94 6.1 結論 94 6.2 未來研究方向與建議 96 第七章 參考文獻 98

    [1] Ahn, S., Kim, T., Park, Y.-J., and Kim, J.-M. (2020). “Improving Effectiveness of Safety Training at Construction Worksite Using 3D BIM Simulation”. Advances in Civil Engineering, 2020, 1-12.
    [2] Alizadehsalehi, S., Hadavi, A., and Huang, J. C. (2020). “From BIM to extended reality in AEC industry”. Automation in Construction, 116, 103254..
    [3] Asadi, E., Li, B., and Chen, I.-M. (2018). “Pictobot: A Cooperative Painting Robot for Interior Finishing of Industrial Developments”. IEEE Robotics & Automation Magazine, 25(2), 82-94.
    [4] “BIM Orbit (@BIMOrbit) / Twitter.” (n.d.). <https://twitter.com/bimorbit?lang=en> (Jul. 15, 2023).
    [5] “Hololens開發筆記——MRTK - 台部落.” (n.d.). https://www.twblogs.net/a/5bf5db85bd9eee37a1434e9b> (Jul. 15, 2023).
    [6] Kyjanek, O., Al Bahar, B., Vasey, L., Wannemacher, B., and Menges, A. (2019). “Implementation of an Augmented Reality AR Workflow for Human Robot Collaboration in Timber Prefabrication”. Proceedings of the International Symposium on Automation and Robotics in Construction (IAARC).
    [7] Lee, S. Y., Lee, K. Y., Lee, S. H., Kim, J. W., and Han, C. S. (2006). “Human-robot cooperation control for installing heavy construction materials”. Autonomous Robots, 22(3), 305-319.
    [8] Liu, J., Xu, D., Hyyppa, J., and Liang, Y. (2021). “A Survey of Applications With Combined BIM and 3D Laser Scanning in the Life Cycle of Buildings”. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 5627-5637.
    [9] “Leica BLK2GO Mobile Mapping.” (n.d.). <https://shop.leica-geosystems.com/leica-blk/blk2go/overview> (Jul. 11, 2023).
    [10] Ma, X., Mao, C., and Liu, G. (2022). “Can robots replace human beings? —Assessment on the developmental potential of construction robot”. Journal of Building Engineering, 56, 104727.
    [11] Ma, Z., Cai, S., Mao, N., Yang, Q., Feng, J., and Wang, P. (2018). “Construction quality management based on a collaborative system using BIM and indoor positioning”. Automation in Construction, 92, 35-45.
    [12] Nguyen, D.-C., Nguyen, T.-Q., Jin, R., Jeon, C.-H., and Shim, C.-S. (2021). “BIM-based mixed-reality application for bridge inspection and maintenance”. Construction Innovation, 22(3), 487-503.
    [13] Parascho, S. (2023). “Construction Robotics: From Automation to Collaboration”. Annual Review of Control, Robotics, and Autonomous Systems, 6(1), 183-204.
    [14] Parasuraman, R., Sheridan, T., and Wickens, C. (2000). “A model for types and levels of human interaction with automation”. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 30(3), 286-297.
    [15] Ratajczak, J., Riedl, M., and Matt, D. (2019). “BIM-based and AR Application Combined with Location-Based Management System for the Improvement of the Construction Performance”. Buildings, 9(5), 118.
    [16] “ROS MoveIt.” (n.d.). <https://moveit.ros.org/> (Jul. 12, 2023).
    [17] Sacks, R., Eastman, C., Lee, G., and Teicholz, P. (2018). BIM Handbook : A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers.
    [18] Tan Qu, and Wei Sun,. (2015). “Usage of 3D Point Cloud Data in BIM (Building Information Modelling): Current Applications and Challenges”. Journal of Civil Engineering and Architecture, 9(11).
    [19] “urdf - ROS Wiki. ” (n.d.). <http://wiki.ros.org/urdf> (Jul. 11, 2023).
    [20] Wang, Q., and Kim, M.-K. (2019). “Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018”. Advanced Engineering Informatics, 39, 306-319.
    [21] Wang, X., Liang, C.-J., Menassa, C. C., and Kamat, V. R. (2021). “Interactive and Immersive Process-Level Digital Twin for Collaborative Human–Robot Construction Work”. Journal of Computing in Civil Engineering, 35(6).
    [22] “WLKATA Mirobot User Manual.” (n.d.).<https://uploadsssl.webflow.com/5edc22ea8e58c13e2883e09b/5efd245acdbcfb27deb727ce_WLKATA%20Mirobot%20User%20Manual%20V1.2.pdf> (Jul. 14, 2023).
    [23] Zhang, Y., Liu, H., Kang, S.-C., and Al-Hussein, M. (2020). “Virtual reality applications for the built environment: Research trends and opportunities”. Automation in Construction, 118, 103311.
    [24] Zhou, T., Zhu, Q., and Du, J. (2020). “Intuitive robot teleoperation for civil engineering operations with virtual reality and deep learning scene reconstruction”. Advanced Engineering Informatics, 46, 101170.
    [25] “天花板施工機器人:CARRY & SHOT.” (n.d.). <https://www.tmsuk.biz/formosa/cases.php?gid=3976ae5a-6985-11e8-948e-fcaa14dbfb9c> (Jul. 14, 2023).
    [26] 杜國良, 謝宗興, 黃昱翔, 厲娓娓(2021). “國內建築資訊建模(BIM)技術之機電繪圖規範研究”, 內政部建築研究所, 110 年度建築資訊整合應用躍升計畫.
    [27] 周詠鈞 (2021). “結合BIM與光達點雲建構符合業主需求之工程進度評量模式-以裝修工程為例”, 國立成功大學土木工程學系研究所碩士論文, 台南市.
    [28] 莊大軍 (2020). “開發以混合實境為基礎之工程作業系統”, 國立成功大學土木工程學系研究所碩士論文, 台南市.
    [29] 陳意慧 (2022). “利用混合實境建構機電工程放樣及施工系統” , 國立成功大學土木工程學系研究所碩士論文, 台南市.
    [30] “臺灣明麗手動噴槍- 志尚塗裝. ” (n.d.). <http://www.zsvsz.com/product/manoli/m/> (Jul. 11, 2023).
    [31] 臺大土木工程資訊模擬與管理研究中心 (2017). “ BIM模型發展程度規範”, 台灣.
    [32] 蕭苡烜 (2022). “結合建築資訊模型及混合實境建構室內油漆工程之人機協作系統” , 國立成功大學土木工程學系研究所碩士論文, 台南市.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE