| 研究生: |
郭子瑋 Guo, Zi-Wei |
|---|---|
| 論文名稱: |
內皮細胞參與轉移癌細胞誘發先天免疫細胞CD26表達機制之探討 Studies of the Mechanism for Metastatic Tumor Cell-induced CD26 Upregulation in Innate Immune Cells that involves Endothelial Cells |
| 指導教授: |
鄭宏祺
Cheng, Hung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 內皮細胞 、先天免疫細胞 、癌症轉移 |
| 外文關鍵詞: | Endothelial Cells, Innate Immune Cells, Cancer Metastasis |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗室過去證實血生性癌細胞能與肺臟血管內皮細胞上CD26 (dipeptidyl peptidase IV)結合,而促進癌細胞轉移。除了肺臟的血管內皮細胞之外,CD26也會表達在免疫細胞的表面上。文獻指出CD26在免疫細胞對抗感染病症上扮演負調控角色。臨床統計資料亦明確顯示,癌症病患體內免疫細胞CD26高表達者其預後情況(prognosis)較差。先前本實驗室已發現轉移癌細胞在經由血液循環轉移的過程中,會誘發小鼠體內先天免疫細胞(innate immune cells)表面上CD26表達的增高,因而抑制其細胞毒殺之能力。同時,亦已發現轉移癌細胞在體外(ex vivo)環境中,無法誘發先天免疫細胞表面CD26表達的升高,這表示尚有其它體內的因子參與此CD26誘發反應。文獻指出轉移癌細胞可召集骨髓衍生抑制細胞(myeloid-derived suppressor cells, MDSC)至血液循環中抑制免疫細胞的功能,但實驗發現小鼠骨髓衍生抑制細胞並未參與此抑制機制。在體內血液循環中,血管內皮細胞與全血血球細胞是體外環境中沒有的因子,經實驗證實血管內皮細胞參與轉移癌細胞誘發先天免疫細胞表面CD26高表達,進而抑制其毒殺能力,而全血血球細胞則不參與。我們更進一步地在體外實驗發現,經轉移癌細胞刺激之血管內皮細胞,其所分泌的條件培養液(conditioned media)即足以誘發先天免疫細胞表面CD26高表達並抑制其毒殺能力。文獻指出,先天免疫細胞功能的活化或抑制會受不同的細胞激素(cytokine)和趨化因子(chemokine)所調控。我們亦利用高通量微珠式蛋白偵測技術(Flowcytomix)偵測到受癌細胞刺激之內皮細胞所分泌的條件培養液中,介白素第六因子(IL-6)的表達量增加。
In our previous data, we demonstratedthat metastatic cancer cells binded to CD26, which is an adhesison molecule on lung endothelail cells. CD26 not only expressed in lung endothelial cells but also in immune cells. CD26 overexpressed in immune cells plays a role of negative regulating in host immunity against microbes.In clinical investigation,CD26 overexpressed in immune cellsof cancer patients consider revising bad prognosis.In our previous data, we demostrated metastastic tumor cell-induced CD26 upregulation in innate immune cells resulting in cytotoxic suppression.Ex vivo, we demostrated metastatic cancer cells can’t directly induce CD26 overexpress in immune cells.This data suggesting us that another factors to participate in the inhibited mechanism. Metastatic cancer cells recruitedmyeloid-derived suppressor cellsto bloodstream resulte in suppression of immune cells. But in our experiment,CD26 upregulation of innate immune cells can’t be induce by metastatic cancer cells via myeloid-derived suppressor cells. In blood stream, whole blood cells and endothelail cells exist in vivo no in vitro. We demostrated that endothelial cells are required for metastatic cancer cell-induced CD26 upregulation of innate immune cells, not via whole blood cells. Furthermore, we observed that metastatic cancer cells stimulated endothelial cells secreting conditioned medium to induce CD26 upregulation and cytotoxic suppression of innate immune cells. Innate immune cells activated via several of cytokine and chemokine. Therefore, we used the flowcytomix bead-based protein detection system to analyse the condition medium and observed that IL-6 upregualtion in C.M..
第六章參考文獻
1. McGee, S.F., et al., Mammary gland biology and breast cancer. Conference on Common Molecular Mechanisms of Mammary Gland Development and Breast Cancer Progression. EMBO Rep, 2006. 7(11): p. 1084-8.
2. Risau, W., Mechanisms of angiogenesis. Nature, 1997. 386(6626): p. 671-4.
3. Semenza, G.L., Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci, 2012. 33(4): p. 207-14.
4. Westermarck, J. and V.M. Kahari, Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J, 1999. 13(8): p. 781-92.
5. Stagg, J., R.W. Johnstone, and M.J. Smyth, From cancer immunosurveillance to cancer immunotherapy. Immunol Rev, 2007. 220: p. 82-101.
6. Chambers, A.F., A.C. Groom, and I.C. MacDonald, Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2002. 2(8): p. 563-72.
7. Muller, A., et al., Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001. 410(6824): p. 50-6.
8. Koeneman, K.S., F. Yeung, and L.W. Chung, Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate, 1999. 39(4): p. 246-61.
9. Kristensen, C.A., P.E. Kristjansen, and H.H. Hansen, Systemic chemotherapy of brain metastases from small-cell lung cancer: a review. J Clin Oncol, 1992. 10(9): p. 1498-502.
10. Cheng, H.C., et al., Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J Biol Chem, 1998. 273(37): p. 24207-15.
11. Tamkun, J.W. and R.O. Hynes, Plasma fibronectin is synthesized and secreted by hepatocytes. J Biol Chem, 1983. 258(7): p. 4641-7.
12. Humphries, M.J., K. Olden, and K.M. Yamada, A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science, 1986. 233(4762): p. 467-70.
13. Iwata, S. and C. Morimoto, CD26/dipeptidyl peptidase IV in context. The different roles of a multifunctional ectoenzyme in malignant transformation. J Exp Med, 1999. 190(3): p. 301-6.
14. Chen, X., Biochemical properties of recombinant prolyl dipeptidases DPP-IV and DPP8. Adv Exp Med Biol, 2006. 575: p. 27-32.
15. Kieffer, T.J., C.H. McIntosh, and R.A. Pederson, Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology, 1995. 136(8): p. 3585-96.
16. Akira, S., S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity. Cell, 2006. 124(4): p. 783-801.
17. Plackett, T.P., et al., Aging and innate immune cells. J Leukoc Biol, 2004. 76(2): p. 291-9.
18. Galli, S.J., S. Nakae, and M. Tsai, Mast cells in the development of adaptive immune responses. Nat Immunol, 2005. 6(2): p. 135-42.
19. Matsushima, H., et al., TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol, 2004. 173(1): p. 531-41.
20. Fehrenbach, K., et al., Stimulation of mast cells via FcvarepsilonR1 and TLR2: the type of ligand determines the outcome. Mol Immunol, 2007. 44(8): p. 2087-94.
21. Lawrence, T. and G. Natoli, Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol, 2011. 11(11): p. 750-61.
22. Corleis, B., et al., Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell Microbiol, 2012. 14(7): p. 1109-21.
23. Allen, L.A., Mechanisms of pathogenesis: evasion of killing by polymorphonuclear leukocytes. Microbes Infect, 2003. 5(14): p. 1329-35.
24. Joffre, O.P., et al., Cross-presentation by dendritic cells. Nat Rev Immunol, 2012. 12(8): p. 557-69.
25. Palm, N.W., R.K. Rosenstein, and R. Medzhitov, Allergic host defences. Nature, 2012. 484(7395): p. 465-72.
26. Gebreselassie, N.G., et al., Eosinophils preserve parasitic nematode larvae by regulating local immunity. J Immunol, 2012. 188(1): p. 417-25.
27. Liu, R.B., et al., Densely granulated murine NK cells eradicate large solid tumors. Cancer Res, 2012. 72(8): p. 1964-74.
28. Multhoff, G., et al., Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors. Int J Cancer, 2000. 88(5): p. 791-7.
29. Smyth, M.J., et al., New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer, 2002. 2(11): p. 850-61.
30. Shankaran, V., et al., IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 2001. 410(6832): p. 1107-11.
31. Wu, J. and L.L. Lanier, Natural killer cells and cancer. Adv Cancer Res, 2003. 90: p. 127-56.
32. Chan, C.J., et al., DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J Immunol, 2010. 184(2): p. 902-11.
33. Muller-Eberhard, H.J., Molecular organization and function of the complement system. Annu Rev Biochem, 1988. 57: p. 321-47.
34. Iwasaki, A. and R. Medzhitov, Toll-like receptor control of the adaptive immune responses. Nat Immunol, 2004. 5(10): p. 987-95.
35. Vesely, M.D., et al., Natural innate and adaptive immunity to cancer. Annu Rev Immunol, 2011. 29: p. 235-71.
36. Matzinger, P., Tolerance, danger, and the extended family. Annu Rev Immunol, 1994. 12: p. 991-1045.
37. Zitvogel, L., A. Tesniere, and G. Kroemer, Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol, 2006. 6(10): p. 715-27.
38. Schreiber, R.D., L.J. Old, and M.J. Smyth, Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science, 2011. 331(6024): p. 1565-70.
39. Buettner, R., L.B. Mora, and R. Jove, Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res, 2002. 8(4): p. 945-54.
40. Nefedova, Y., et al., Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol, 2004. 172(1): p. 464-74.
41. Ohm, J.E., et al., VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood, 2003. 101(12): p. 4878-86.
42. Espana, L., et al., Overexpression of Bcl-xL in human breast cancer cells enhances organ-selective lymph node metastasis. Breast Cancer Res Treat, 2004. 87(1): p. 33-44.
43. Ibegbu, C.C., et al., Differential expression of CD26 on virus-specific CD8(+) T cells during active, latent and resolved infection. Immunology, 2009. 126(3): p. 346-53.
44. Kurktschiev, D., et al., Successful immunomodulating in AIDS patients with ursodeoxycholic acid--a pilot study. Clin Exp Immunol, 1999. 115(1): p. 144-6.
45. Prabhash, K., et al., CD26 expression in donor stem cell harvest and its correlation with engraftment in human haematopoietic stem cell transplantation: potential predictor of early engraftment. Ann Oncol, 2010. 21(3): p. 582-8.
46. Molica, S., et al., Serum level of CD26 predicts time to first treatment in early B-chronic lymphocytic leukemia. Eur J Haematol, 2009. 83(3): p. 208-14.
47. Cro, L., et al., CD26 expression in mature B-cell neoplasia: its possible role as a new prognostic marker in B-CLL. Hematol Oncol, 2009. 27(3): p. 140-7.
48. Kim, S., et al., In vivo developmental stages in murine natural killer cell maturation. Nat Immunol, 2002. 3(6): p. 523-8.
49. Lazetic, S., et al., Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J Immunol, 1996. 157(11): p. 4741-5.
50. Bryceson, Y.T., et al., Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev, 2006. 214: p. 73-91.
51. Trapani, J.A. and M.J. Smyth, Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol, 2002. 2(10): p. 735-47.
52. Spaggiari, G.M., et al., Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 2006. 107(4): p. 1484-90.
53. Ferguson-Smith, A.C., et al., Regional localization of the interferon-beta 2/B-cell stimulatory factor 2/hepatocyte stimulating factor gene to human chromosome 7p15-p21. Genomics, 1988. 2(3): p. 203-8.
54. Akira, S., et al., Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J, 1990. 4(11): p. 2860-7.
55. Dienz, O., et al., Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal Immunol, 2012. 5(3): p. 258-66.
56. Hirano, T., K. Ishihara, and M. Hibi, Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene, 2000. 19(21): p. 2548-56.
校內:2022-12-31公開