簡易檢索 / 詳目顯示

研究生: 朱巧雲
Chu, Chiao-Yun
論文名稱: 砷化合物對口腔癌細胞在細胞凋亡中的抗癌效果
Anticancer Effect of Arsenic Compounds on Apoptosis in Oral Cavity Cancer Cells
指導教授: 黃步敏
Huang, Bu-Miin
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 83
中文關鍵詞: 亞硝酸鈉二甲基砷酸口腔癌細胞凋亡半胱氨酸蛋白酶有絲分裂原活化蛋白激酶訊息路徑
外文關鍵詞: sodium arsenite, dimethylarsenic acid, oral cancer, apoptosis, MAPK pathway
相關次數: 點閱:89下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 砷是一種常見的環境毒物,在流行病學的研究當中指出,長期暴露之下,砷會造 成人體的神經毒性及周邊血管疾病等。不過近來也有學者發現,三氧化二砷 (As2O3)對於急性前骨髓性白血病(Acute promyelocytic leukemia; APL)的患者具有療效,被認為可以作為癌症的治療藥物。口腔癌長年排名在台灣十大癌症之中,且好發率有逐年攀升的趨勢,其中大約有75%是因為個人習慣造成的,包括抽菸、酗酒等。在某些特定區域,尤其是東南亞的國家,嚼食檳榔也是對於導致口腔癌發展的危險因子之一。為了尋找治療口腔癌更有效的方法,並針對砷具有抗癌作用的特性,進一步探討是否能將砷化合物的療效擴展到口腔癌的治療。本篇研究利用三株來自口腔不同部位的鱗狀癌細胞株(Fadu、OEC-M1和OC3)加以處理不同濃度的亞砷酸鈉(Sodium arsenite, NaAsO2)及二甲基砷酸((CH3)2AsO2H, DMA),結果顯示在OEC-M1及OC3分別處理1 μM 亞砷酸 和1 mM二甲基砷酸,以及Fadu細胞株處理10 μM 亞砷酸鈉和1 mM二甲基砷酸24小時後,細胞會呈現鼓起(cell rounded-up)且細胞膜有發泡(membrane blebbing)的現象,顯現細胞凋亡(apoptosis)的特徵。利用細胞存活率實驗的測定,這三株口腔癌細胞隨著處理的砷化合物濃度增加,活細胞比例都有明顯的降低。而經由流式細胞儀探測,亞硝酸鈉和二甲基砷酸會造成細胞週期的分布改變,不僅增加subG1期的細胞數量,也會促使細胞進停滯在G2/M。再根據annexin V/PI雙染細胞凋亡分析,也證實亞砷酸鈉以及二甲基砷酸會造成口腔癌細胞凋亡。另外,在砷化合物處理之後會活化半胱氨酸蛋白酶(caspase-8, 9及3)並造成聚(腺苷二磷酸-核糖)多聚酶(PARP)的剪切,伴隨著有絲分裂原活化蛋白激酶(JNK、ERK1/2及p38 MAPK)的磷酸化。由此得知,不論是亞砷酸鈉還是二甲基砷酸都會經由半胱氨酸蛋白酶路徑的活化使Fadu、OEC-M1和OC3細胞凋亡,而絲裂原活化蛋白激酶的表現也參與其中的調控機制。

    Arsenic is a well-documented environmental toxicant. Epidemiological survey implicates that exposure to arsenic will induce neurotoxicity and peripheral vascular disease. In fact, arsenic trioxide (ATO) has also been used for medicinal purposes, originally to treat acute promyelocytic leukemia (APL), showing ability for anticancer treatment. Oral cancer has been in top 10 common cancers for decades in Taiwan, and the incidence rate still increases year after year. Around 75 percent of oral cancers are linked to modifiable behaviors, such as tobacco use and excessive alcohol consumption. Also, betel chewing in some certain areas, especially in Southeast Asia, is known to be a strong risk factor for developing oral cancers. In the present study, we investigated three oral squamous carcinoma cells (Fadu, OEC-M1, and OC3) treated by sodium arsenite (NaAsO2) and dimethylarsenic acid (DMA) to determine whether the arsenic compounds could be the anti-cancer agents. Results showed that cells appeared rounded up and became membrane blebbing after treatments with NaAsO2 (1 μM) and DMA (1 mM) for 24 hr in OEC-M1 and OC3 cell lines, and NaAsO2 (10 μM) and DMA (1 mM) for 24 hr in Fadu cell line, respectively. These morphological changes revealed characteristics of apoptosis. In cell viability test, the surviving percentage of all three cell lines significantly decreased as the dosage of arsenic compounds increased (10 to 100 μM NaAsO2 and 1 to 100 mM DMA). The impact of arsenic compounds on cell cycle regulation was detected by flow cytometry, and data showed that the percentage of subG1 and G2/M phase cells among three cell lines increased in both NaAsO2 and DMA treatments. We further confirmed that cells underwent apoptosis under both arsenic compound treatments through annexinV/PI double staining. In addition, examined by western blot, activation of caspase-8, -9 and -3; cleavage of poly ADP-ribose polymerase (PARP); and phosphorylation of JNK, ERK1/2, and p38 could all be observed by NaAsO2 and DMA treatments among three cell lines. Taken together, NaAsO2 and DMA could induce cell apoptosis through extrinsic and intrinsic apoptotic pathways and cause the activation of MAPK pathways in Fadu, OEC-M1 and OC3 oral cancer cell lines.

    ABSTRACTS Chinese abstract.........................................i English abstract.......................................iii ACKNOWLEDGEMENTS.........................................v TABLE OF CONTENTS.......................................vi LIST OF FIGURES.......................................viii INTRODUCTION.............................................1 MATERIALS AND METHODS Chemicals................................................6 Cell Culture.............................................7 Morphology Observation...................................7 MTT cell Viability Test..................................8 Cell Cycle Analysis......................................8 Annexin V/PI Double Staining Assay.......................9 Protein Extraction and Immunoblotting analysis...........9 Statistics..............................................10 RESULTS The morphological changes after treatment with arsenic compounds in oral cavity cancer cells...................11 Effects of arsenic compounds on cell viability among Fadu, OEC-M1 and OC3 cells....................................12 The effects of arsenic compounds on cell cycle redistribution among Fadu, OEC-M1 and OC3 cells.........13 Arsenic compounds induced cell apoptosis among Fadu, OEC-M1 and OC3 cells...........................................14 The involvement of extrinsic and intrinsic pathways of caspases in arsenic-induced apoptosis among Fadu, OEC-M1 and OC3 cells...............................................15 The involvement of mitogen-activated protein kinase (MAPK) pathways in arsenic-induced apoptosis among Fadu, OEC-M1 and OC3 cells...............................................17 DISCUSSION..............................................20 REFERENCES..............................................75

    Akao Y, Nakagawa Y, Akiyama K. Arsenic trioxide induces apoptosis in neuroblastoma
    cell lines through the activation of caspase 3 in vitro. FEBS Lett. 455(1-2):59-62, 1999
    Alvarado-Kristensson M, Melander F, Leandersson K, Rönnstrand L, Wernstedt C,
    Andersson T. p38-MAPK signals survival by phosphorylation of caspase-8 and
    caspase-3 in human neutrophils. J Exp Med. 199(4):449-58, 2004
    Andrew AS, Burgess JL, Meza MM, Demidenko E, Waugh MG, Hamilton JW, Karagas
    MR. Arsenic exposure is associated with decreased DNA repair in vitro and in
    individuals exposed to drinking waterarsenic. Environ Health Perspect. 114(8):1193-8,
    2006
    Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 281(5381):
    1305–08, 1998
    Bernier J, Cooper JS. Chemoradition after surgery for high-risk head and neck cancer
    patients: how strong is the evidence? Oncologist. 10(3):215-24, 2005
    Berridge MV, Tan AS. Characterization of the cellular reduction of
    3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular
    localization, substrate dependence, and involvement of mitochondrial electron
    transport in MTT reduction. Arch Biochem Biophys. 303(2):474-82, 1993
    Brown JM, Attardi LD. The role of apoptosis in cancer development and treatment
    response. Nat Rev Cancer. 5(3):231-7, 2005
    Buckley CD, Pilling D, Henriquez NV, Parsonage G, Threlfall K, Scheel-Toellner
    D, Simmons DL, Akbar AN, Lord JM, Salmon M. RGD peptides induce apoptosis by
    direct caspase-3 activation. Nature. 397(6719):534-9, 1999
    Calatayud M, Devesa V, Vélez D. Differential toxicity and gene expression in Caco-2 cells
    exposed to arsenic species. Toxicol Lett. 218(1):70-80, 2013
    Chen CJ, You SL, Lin LH, Hsu WL, Yang YW. Cancer epidemiology and control in
    Taiwan: a brief review. Jpn J Clin Oncol. 32(suppl 1):S66-S81, 2002
    Chen GQ, Zhu J, Shi XG, Ni JN, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM,
    Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY,
    Chen Z. In vitro studies on cellular and molecular mechanisms of arsenic trioxide
    (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell
    apoptosis with downregulation of Bcl-2 expression and modulation of
    PML-RAR/PML proteins. Blood. 88(3):1052-61, 1996
    Chen YW, Lin GJ, Chia WT, Lin CK, Chuang YP, Sytwu HK. Triptolide exerts anti-tumor
    effect on oral cancer and KB cells in vitro and in vivo. Oral Oncology. 45(7):562–68,
    2009
    Cheng B, Yang X, Han Z, An L, Liu S. Arsenic trioxide induced the apoptosis of laryngeal
    cancer via down-regulation of survivin mRNA. Auris Nasus Larynx. 35(1):95-101,
    2008
    Cheng X, Quintás-Cardama A, Golemovic M, Zingaro R, Gao MZ, Freireich EJ, Andreeff
    M, Kantarjian HM, Verstovsek S. The organic arsenic derivative GMZ27 induces
    PML-RARα-independent apoptosis in myeloid leukemia cells. Anticancer Res.
    32(7):2871-80, 2012
    Choi WS, Eom DS, Han BS, Kim WK, Han BH, Choi EJ, Oh TH, Markelonis GJ, Cho JW,
    Oh YJ. Phosphorylation of p38 MAPK induced by oxidative stress is linked to
    activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic
    neurons. J Biol Chem. 279(19):20451-60, 2004
    Concin N, Stimpfl M, Zeillinger C, Wolff U, Hefler L, Sedlak J, Leodolter S, Zeillinger R.
    Role of p53 in G2/M cell cycle arrest and apoptosis in response to gamma-irradiation
    in ovarian carcinoma cell lines. Int J Oncol. 22(1):51-7, 2003
    Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 116(2):205-19, 2004
    David MC, Randal SW, Stephen YL. Head and neck cancer. Cancer. 113(S7):1911–32,
    2008
    Davison K, Mann KK, Waxman S, Miller WH Jr. JNK activation is a mediator of arsenic
    trioxide-induced apoptosis in acute promyelocytic leukemia cells. Blood.
    103(9):3496-502, 2004
    Donovan P, Cato K, Legaie R, Jayalath R, Olsson G, Hall B, Olson S, Boros S, Reynolds
    BA, Harding A. Hyperdiploid tumor cells increase phenotypic heterogeneity within
    Glioblastoma tumors. Mol Biosyst. 10(4):741-58, 2014
    Eguchi R, Fujimori Y, Takeda H, Tabata C, Ohta T, Kuribayashi K, Fukuoka K, Nakano T.
    Arsenic trioxide induces apoptosis through JNK and ERK in human mesothelioma
    cells. J Cell Physiol. 226(3):762-8, 2011
    Etemadmoghadam D, Au-Yeung G, Wall M, Mitchell C, Kansara M, Loehrer E, Batzios C,
    George J, Ftouni S, Weir BA, Carter S, Gresshoff I, Mileshkin L,Rischin D, Hahn WC,
    Waring PM, Getz G, Cullinane C, Campbell LJ, Bowtell DD. Resistance to CDK2
    inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian
    cancer. Clin Cancer Res. 19(21):5960-71, 2013
    Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim
    Biophys Sin (Shanghai). 37(11):719-27, 2005
    Goping IS, Barry M, Liston P, Sawchuk T, Constantinescu G, Michalak KM, Shostak I,
    Roberts DL, Hunter AM, Korneluk R, Bleackley RC. Granzyme B-induced apoptosis
    requires both direct caspase activation and relief of caspase inhibition. Immunity.
    18(3):355-65, 2003
    Grethe S, Ares MP, Andersson T, Pörn-Ares MI. p38 MAPK mediates TNF-induced
    apoptosis in endothelial cells via phosphorylation and downregulation of Bcl-x(L).
    Exp Cell Res. 298(2):632-42, 2004
    Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in
    apoptosis. Genes Dev. 13(15):1899-1911, 1999
    Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events.
    Science. 246(4930):629-34, 1989
    Hayakawa J, Ohmichi M, Kurachi H, Ikegami H, Kimura A, Matsuoka T, Jikihara H,
    Mercola D , Murata Y. Inhibition of extracellular signal-regulated protein kinase or
    c-Jun N-terminal protein kinase cascade, differentially activated by cisplatin, sensitizes
    human ovarian cancer cell line. J Biol Chem. 274(44):31648-54, 1999
    Hitomi J, Katayama T, Taniguchi M, Honda A, Imaizumi K, Tohyama M. Apoptosis
    induced by endoplasmic reticulum stress depends on activation of caspase-3 via
    caspase-12. Neurosci Lett. 357(2):127-30, 2004
    Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver
    cell death. Toxicol Sci. 89(1):31-41, 2006
    Jiang XH, Wong BC, Yuen ST, Jiang SH, Cho CH, Lai KC, Lin MC, Kung HF, Lam SK.
    Arsenic trioxide induces apoptosis in human gastric cancer cells through up-regulation
    of p53 and activation ofcaspase-3. Int J Cancer. 91(2):173-9, 2001
    Kang YH, Lee SJ. The role of p38 MAPK and JNK in Arsenic trioxide-induced
    mitochondrial cell death in human cervical cancer cells. J Cell Physiol. 217(1):23-33,
    2008
    Kasibhatla S, Tseng B. Why Target Apoptosis in Cancer Treatment? Mol Cancer Ther.
    2(6):573-80, 2003
    Kim MJ, Jung JH, Lee WS, Yun JW, Lu JN, Yi SM, Kim HJ, Chang SH, Kim GS, Hong
    SC, Ha WS. Arsenic hexoxide enhances TNF-α-induced anticancer effects by
    inhibiting NF-κB activity at a safe dose in MCF-7 human breast cancer cells.
    Oncol Rep. 31(5): 2305-11, 2014
    Kim YH, Lee DH, Jeong JH, Guo ZS, Lee YJ. Quercetin augments TRAIL-induced
    apoptotic death: involvement of the ERK signal transduction pathway.
    Biochem Pharmacol. 75(10):1946-58, 2008
    Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette
    smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med
    24(10):450-3, 1995
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH,
    Blagosklonny MV , El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA,
    Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini
    M, Zhivotovsky B, Melino G; Nomenclature Committee on Cell Death2009.
    Classification of cell death: recommendations of the Nomenclature Committee on Cell
    Death 2009. Cell Death Differ. 16(1):3-11, 2009
    Kuwabara M, Asanuma T, Niwa K, Inanami O. Regulation of cell survival and death
    signals induced by oxidative stress. J Clin Biochem Nutr. 43(2):51-7, 2008
    Laraway DC, Lakshmiah R, Lowe D, Roe B, Rogers SN. Quality of life in older people
    with oral cancer. Br J Oral Maxillofac Surg. 50(8):715-20, 2012
    Lin KW, Behl S, Furst A, Chien P, Toia RF. Formation of dimethylarsinic acid from
    methylation of sodium arsenite in lumbricus terrestris. Toxicol In Vitro. 12(2):197-9,
    1998
    Lin SC, Liu CJ, Chiu CP, Chang SM, Lu SY, Chen YJ. Establishment of OC3 oral
    carcinoma cell line and identification of NF-kappa B activation responses to areca nut
    extract. J Oral Pathol Med. 33(2):79-86, 2004
    Ling YH, Jiang JD, Holland JF, Perez-Soler R. Arsenic trioxide produces polymerization of
    microtubules and mitotic arrest before apoptosis in human tumor cell lines.
    Mol Pharmacol. 62(3):529-38, 2002
    Liu Q, Hilsenbeck S, Gazitt Y. Arsenic trioxide-induced apoptosis in myeloma cells:
    p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and
    synergy with APO2/TRAIL. Blood. 101(10):4078-87, 2003
    Li W, Chou IN. Effects of sodium arsenite on the cytoskeleton and cellular glutathione
    levels in cultured cells. Toxicol Appl Pharmacol. 114(1):132-9, 1992
    Li X, Ding X, Adrian TE. Arsenic trioxide induces apoptosis in pancreatic cancer cells via
    changes in cell cycle, caspase activation, and GADD expression. Pancreas.
    27(2):174-9, 2003
    Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta. 58(1):201-35, 2002
    Mandegary A, Torshabi M, Seyedabadi M, Amirheidari B, Sharif E, Ghahremani MH.
    Indomethacin-enhanced anticancer effect of arsenic trioxide in A549 cell line:
    involvement of apoptosis and phospho-ERK and p38 MAPK pathways.
    Biomed Res Int. doi: 10.1155/2013/237543, 2013
    Mann KK, Wallner B, Lossos IS, Miller WH Jr. Darinaparsin: a novel organic arsenical
    with promising anticancer activity. Expert Opin Investig Drugs. 18(11):1727-34, 2009
    Melino G. The Sirens' song. Nature. 412(6842):23, 2001
    Minden A, Lin A, McMahon M, Lange-Carter C, Dérijard B, Davis RJ, Johnson GL, Karin
    M. Differential activation of ERK and JNK mitogen-activated protein kinases by
    Raf-1 and MEKK. Science. 266(5191):1719-23, 1994
    Min J, Sridevi P, Alexander S, Alexander H. Sensitive cell viability assay for use in drug
    screens and for studying the mechanism of action of drugs in Dictyostelium
    discoideum. Biotechniques. 41(5):591-5, 2006
    Nakagawa Y, Akao Y, Morikawa H, Hirata I, Katsu K, Naoe T, Ohishi N, Yagi K. Arsenic
    trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines.
    Life Sci. 70(19):2253-69, 2002
    Ochi T, Nakajima F, Fukumori N. Different effects of inorganic and dimethylated arsenic
    compounds on cell morphology, cytoskeletal organization, and DNA synthesis in
    cultured Chinese hamster V79 cells. Arch Toxicol. 72(9):566-73, 1998
    Olson BJ, Markwell J. Assays for determination of protein concentration. Current
    Protocols in Protein Science. 3(4):1-29, 2007
    Rangan SR. A new human cell line (FaDu) from a hypopharyngeal carcinoma. Cancer.
    29(1):117-21, 1972
    Sastry PS, Rao KS. Apoptosis and the nervous system. J Neurochem. 74(1):1-20, 2000
    Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ,
    Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z,
    Wang ZY . Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic
    leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood
    89(9):3354-60, 1997
    Shu CH, Yang WK, Shih YL, Kuo ML, Huang TS. Cell cycle G2/M arrest and activation
    of cyclin-dependent kinases associated with low-dose paclitaxel-induced sub-G1
    apoptosis. Apoptosis. 2(5):463-70, 1997
    Sudbø J. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of
    the head and neck. N Engl J Med. 345(5):376-7, 2001
    Tewari R, Sharma V, Koul N, Sen E. Involvement of miltefosine-mediated ERK activation
    in glioma cell apoptosis through Fas regulation. J Neurochem. 107(3):616-27, 2008
    Tyagi AK, Singh RP, Agarwal C, Chan DC, Agarwal R. Silibinin strongly synergizes
    human prostate carcinoma DU145 cells to doxorubicin-induced growth Inhibition,
    G2-M arrest, and apoptosis. Clin Cancer Res. 8(11):3512-9, 2002
    Vahter M. Methylation of inorganic arsenic in different mammalian species and population
    groups. Sci Prog. 82(1):69-88, 1999
    van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP. A novel assay to
    measure loss of plasma membrane asymmetry during apoptosis of adherent cells in
    culture. Cytometry. 24(2):131-9, 1996
    Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation.
    Oncogene. 23(16):2838-49, 2004
    Wang P, Henning SM, Heber D. Limitations of MTT and MTS-based assays for
    measurement of antiproliferative activity of green tea polyphenols. PLoS One.
    5(4):e10202. doi: 10.1371, 2010
    Westwick JK, Bielawska AE, Dbaibo G, Hannun YA, Brenner DA. Ceramide activates the
    stress-activated protein kinases. J Biol Chem. 270(39):22689-92, 1995
    Wilson TR, Johnston PG, Longley DB. Anti-apoptotic mechanisms of drug resistance in
    cancer. Curr Cancer Drug Targets. 9(3):307-19, 2009
    Yedjou C, Tchounwou P, Jenkins J, McMurray R. Basic Mechanisms of Arsenic Trioxide
    (ATO)-Induced Apoptosis in Human Leukemia (HL-60) Cells. Journal of Hematology
    & Oncology. 3:28, 2010
    Yih LH, Wu YC, Hsu NC, Kuo HH. Arsenic trioxide induces abnormal mitotic spindles
    through a PIP4KIIγ/Rho pathway. Toxicol Sci. 128(1):115-25, 2012
    Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J, Lin A. JNK suppresses
    apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol
    Cell. 3(3):329-40, 2004
    Zhang TD, Chen GQ, Wang ZG, Wang ZY, Chen SJ, Chen Z (2001). Arsenic trioxide,
    a therapeutic agent for APL. Oncogene. 20(49):7146-53, 2012
    Zuk A, Targosz-Korecka M, Szymonski M. Effect of selected drugs used in asthma
    treatment on morphology and elastic properties of red blood cells.
    Int J Nanomedicine. 6:249-57, 2011

    下載圖示 校內:2017-08-26公開
    校外:2017-08-26公開
    QR CODE