| 研究生: |
楊映庭 Yang, Inn-Ting |
|---|---|
| 論文名稱: |
六角形氧化鋅晶柱的奈米共振腔模態分析 Resonant modes in Hexagonal ZnO Nano Cavities |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 有限時域差分法 、六角形共振腔 、迴廊模態 、準迴廊模態 |
| 外文關鍵詞: | FDTD, hexagonal cavity, WGMs, quasi-WGMs |
| 相關次數: | 點閱:146 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅(ZnO)具有高原子鍵結能且寬能帶隙之特性,使其在紫外光或可見光光學元件應用上有很大的發展與願景。另外,氧化鋅晶格屬於六方纖鋅礦結構 (Wurtzite hexagonal structure),因此其六角形切面便成為分析六角形迴廊模態(WGMs, whispering gallery mode)與三角形準迴廊模態(quasi-WGMs, quasi- whispering gallery mode) 很好的材料。由於WGMs與quasi-WGMs為利用全內反射將光束侷限在腔內,使得此兩種模態皆擁有很高的品質因子。因此,本篇論文將利用有限時域差分法(FDTD, Finite Difference Time Domain)探討此兩種共振模態在六角形共振腔內之光學效應。我們在結構尺寸較小的情況下,找出低階模態WGMs的場值分布圖、等效折射率、共振位置與線寬等,並發現低階模態的線寬趨勢有著特殊多角形共振腔之特性;接著,在大尺寸共振腔中分析並探討高階quasi-WGMs,藉由改變單一共振腔的結構使其簡併模態分裂,並利用兩個相鄰共振腔之間的耦合觀察到模態分裂之光學特性。
Zinc oxide (ZnO) is a promising semiconductor material for UV or visible photonic devices due to its large exciton binding energy and wide band gap. Furthermore, crystal structure of ZnO is usually the hexagonal wurtzite type. Therefore, the hexagonal cross sections provide a unique subject for the analysis of hexagonal WGMs and triangle quasi-WGMs. Those two types of resonance mode use internal reflection for light confinement, which can provide a very high quality factor. Therefore, in this thesis, we investigated those two types of resonance in the hexagonal cavity via FDTD calculations. For the case of the small-scale structure, we present a numerical analysis of low-order WGMs. Our investigations include mode patterns, effective refractive-index, resonance positions and linewidths, etc. And found that the tendency of linewidths exhibits a characteristic of polygonal-shaped cavities. Subsequently, we studied high-order quasi-WGMs in the large-Scale Structure. We demonstrate two split resonances of quasi-WGMs by varying the height of the lower edge of the dielectric hexagonal. We also demonstrate the mode splitting effect by putting two hexagonal cavities close to each other.
[1] A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, ”Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nature Photonics, vol.1, pp. 61, 2007.
[2] T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, "Whispering Gallery Modes in Nanosized Dielectric Resonators with Hexagonal Cross Section," Physical review letters, vol. 93, pp. 103903, 2004.
[3] F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, "Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers," Nature Materials, vol. 7, pp. 701, 2008.
[4] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature (London), vol. 421, pp. 925, 2003.
[5] M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, "Light Trapped in a Photonic Dot: Microspheres Act as a Cavity for Quantum Dot Emission," Nano Letters, vol. 1, pp. 309, 2001.
[6] T. Nobis and M. Grundmann, "Low-order optical whispering-gallery modes in hexagonal nanocavities," Physical Review A, vol. 72, pp. 063806, 2005.
[7] J. Z. Liu, S. Lee, Y. H. Ahn, J. Y. Park, K. H. Koh, and K. H. Park, "Identification of dispersion-dependent hexagonal cavity modes of an individual ZnO nanonail," Applied Physics Letters, vol. 92, pp. 263102, 2008.
[8] D. S. Yu, Y. J. Chen, B. J. Li, X. D. Chen, M. Q. Zhang, F. L. Zhao, and S. Ren, "Structural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates," Applied Physics Letters, vol. 91, pp. 091116, 2007.
[9] C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Q. Cao, M. Lorenz, and M. Grundmann, "Whispering gallery mode lasing in zinc oxide microwires," Applied Physics Letters, vol. 92, pp. 241102, 2008.
[10] L. X. Sun, Z. H. Chen, Q. J. Ren, K. Yu, L. H. Bai, W. H. Zhou, H. Xiong, Z. Q. Zhu, and X. C. Shen, "Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity," Physical Review Letters, vol. 100, pp. 156403, 2008.
[11] G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, "Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle," Applied Physics Letters, vol. 94, pp. 051106, 2009.
[12] Hongxing Dong, Zhanghai Chen, Liaoxin Sun, Jian Lu, Wei Xie, H. Hoe Tan, Chennupati Jagadish, and Xuechu Shen, "Whispering gallery modes in indium Oxide hexagonal microcavities," Applied Physics Letters, vol. 94, pp. 173115, 2009.
[13] D. S. Yu, Y. J. Chen, B. J. Li, X. D. Chen, M. Q. Zhang, F. L. Zhao, and S. Ren, "Structural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates," Applied Physics Letters, vol. 91, pp. 091116, 2007.
[14] Qinghai Song, Li Ge, Jan Wiersig, and Hui Cao5, "Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes," Physical Review A, vol. 88, pp. 023834, 2013.
[15] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science, vol. 292, pp. 1897, 2001.
[16] Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature (London), vol. 441, pp. 325, 2006.
[17] H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, "A 342-nm ultraviolet AlGaN multiple quantum-well laser diode," Nature Photonics, vo1. 2, pp. 551, 2008.
[18] Y. Yamashita, M. Kuwabara, K. Torii, and H. Yoshida, "A 340-nm-band ultraviolet laser diode composed of GaN well layers," Optics Express, vol. 21, pp. 3133, 2013.
[19] H. Lohmeyer et al., "Resonant modes in monolithic nitride pillar microcavities," The European Physical Journal B, vol. 48, pp. 291, 2005.
[20] U. Vietze, O. Krauß, F. Laeri, G. Ihlein, F. Sch¨uth, B. Limburg, and M. Abraham, "Zeolite-Dye Microlasers," Physical Review Letters, vol. 81, pp. 4628, 1998.
[21] C. Kim, Y.-J. Kim, E.-S. Jang, G.-C. Yi, and H. H. Kim, "Whispering-gallery-modelike-enhanced emission from ZnO nanodisk," Applied Physics Letters, vol. 88, pp. 093104, 2006.
[22] D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Y. Zhang, S.-L. Chuang, and P. D. Yang, "Whispering Gallery Mode Lasing from Zinc Oxide Hexagonal Nanodisks," ACS Nano, vol. 4, pp. 3270, 2010.
[23] C. Tessarek, G. Sarau, M. Kiometzis, and S. Christiansen, "High quality factor whispering gallery modes from self-assembled hexagonal GaN rods grown by metal-organic vapor phase epitaxy," Optics Express, vol. 21, pp. 2733. 2013.
[24] M. Grundmann and C. P. Dietrich, "Whispering gallery modes in deformed hexagonal resonators," Physica status solidi (b), vol. 249, pp. 871, 2012.
[25] M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, "Fiber-coupled microsphere laser," Optics Letters, vol. 25, pp. 1430, 2000.
[26] T. Baer, "Continuous-wave laser oscillation in a Nd:YAG sphere," Optics Letters, vol. 12, pp. 392, 1987.
[27] Lei Shang, Liying Liu, and Lei Xu, "Single-frequency coupled asymmetric microcavity laser," Optics Letters, vol. 33, pp. 10, 2008.
[28] M. DiDomenico, "Characteristics of a Single-Frequency Michelson-Type He-Ne Gas Laser," IEEE Journal of Quantum Electronics, vol. 2, pp. 8, 1966.
[29] P. Q. Liu, X. Wang, and C. F. Gmachl, "Single-mode quantum cascade lasers employing asymmetric Mach-Zehnder interferometer type cavities," Applied Physics Letters, vol. 101, pp. 161115, 2012.
[30] M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, "Wide single-mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms," Applied Physics Letters, vol. 103, pp. 211112, 2013.
[31] L. Shang, L. Liu, and L. Xu, "Single-frequency coupled asymmetric microcavity laser," Optics Letters, vol. 33, pp. 1150, 2008.
[32] X. Wu, H. Li, L. Liu, and L. Xu, "Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser," Applied Physics Letters, vol. 93, pp. 081105, 2008.
[33] E. Mujagi´c, C. Schwarzer, W. Schrenk, Y. Yao, J. Chen, C. Gmach, and G. Strasser, "Strategies toward the realization of two-dimensional broadband and coherent quantum cascade ring laser arrays," Optical Engineering, vol. 49, pp. 111113, 2010.
[34] Li Ge, "Inverse Vernier effect in coupled lasers," Physical Review A, vol. 92, pp. 013840, 2015.
[35] Hiroshi Kudo, Ryo Suzuki, and Takasumi Tanabe, "Whispering gallery modes in hexagonal microcavities," Physical Review A, vol. 88, pp. 023807, 2013.
[36] Qinghai Song, Li Ge, Jan Wiersig, and Hui Cao, "Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes," Physical Review A, vol. 88, pp. 023834, 2013.
[37] Pochi Yeh, Optical Waves in Layered Media, Wiley-Interscience, 1991.
[38] L. M. Cureton, J.R.Kuttler, "Eigenvalues of the laplacian on regular polygons and polygons resulting from their dissection," Journal of Sound and Vibration, vol. 220(1), pp. 83-89, 1990.
[39] Giora Griffel, "Vernier Effect In Asymmetrical Ring Resonator Arrays," IEEE Photonics Technology Letters, vol. 12(12), pp. 1642, 2000.
[40] P. Saeung, P. P. Yupapin, "Vernier effect of multiple-ring resonator filters modeling by a graphical approach," Optical Engineering, vol. 46(7), pp. 075005, 2007.
[41] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, vol. 14, pp. 302-307, 1966.
[42] Jan Wiersig, "Hexagonal dielectric resonators and microcrystal lasers," Physical Review A, vol. 67, pp. 023807, 2003.