| 研究生: |
游朝凱 Yu, Chau-Kai |
|---|---|
| 論文名稱: |
顏顎面手術計畫基礎建構之自動缺損重建研究 The Infrastructure Study of Maxillofacial Surgical Planning on Automatic Defect Reconstruction |
| 指導教授: |
方晶晶
Fang, Jing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 電腦輔助手術計畫 、自動化缺損重建 |
| 外文關鍵詞: | computer-assisted surgical planning, automatic defect reconstruction |
| 相關次數: | 點閱:70 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對電腦輔助顏顎面手術計畫與重建過程中的需求,提出相對應的解決方案。在顏顎面手術計畫中,許多特定的手術計畫與運動模擬很難以二維的介面來達成,因此本研究以物件導向式的概念與電腦圖學技術為基礎,設計並研發手術計畫的基礎工具,建立三維參考物件及其與三維物件互動的友善性介面與方法,作為手術計畫的基石,並實作應用於實際病例上。
一般在電腦輔助缺損重建技術上,使用二維介面逐層手動編修,不僅耗力費時,所產生的模型補塊不盡理想,表面粗糙不平滑外其每次手動處理的結果亦非唯一,本研究亦提出缺損重建的自動化方法已克服該技術上的瓶頸,以對稱性重切層後之影像為基礎,運用樣版與影像變形方法,產生表面平滑、對稱性更高且維持能維持補塊特徵的重建模型。
In this research, we focus on dealing with the requirements of computer assisted craniofacial surgical planning and how to create an automatic process of defect reconstruction. The craniofacial surgical planning demands several spatial translations on the models. It’s difficult to control specific motion of multiple three-dimensional models based on a two-dimensional interface. Based on the object-oriented programming and the computer graphic techniques, we developed surgical planning interface by creating reference objects in a simple and friendly interface. It allows the users to easily specify the movement constrains of the models. In this paper, we demonstrate a couple clinical applications in physical surgical planning.
In general computer assisted maxillofacial defect reconstruction is time consuming and requires heavily manual modification within 2D graph interface. The outcome from the pervious process exist smoothness and continuity problem. It is due to the reason of manual works so that the quality is unstable. We propose a rapid and automatic method to solve these problems via image warping techniques and templates. Maxillofacial templates are widely used as a reference standard. It is applied on defect reconstruction automation and successfully applies in clinical field.
1. 林子源, “實體模型與電腦輔助技術於口腔顎面術前計劃之應用,” 國立成功大學機械工程學系研究所碩士論文, 2000.
2. 李俊毅, “顎面手術輔駐空間導引系統之設計與實作,” 國立成功大學機械工程學系研究所碩士論文, 2002.
3. 郭泰宏, “醫療影像軟體開發-基礎介面與三維實體模型開發,” 國立成功大學機械工程學系研究所碩士論文, 2002.
4. 鄭元愷, “醫療影像軟體開發-三維醫療影像物間之擷取與處理,” 國立成功大學機械工程學系研究所碩士論文, 2003.
5. 吳東錦, 方晶晶, 俞芹英, “醫學影像之顱顏對稱性判準法則,” 中國機械工程學會第二十一屆全國學術研討會論文, 2004.
6. Hassfeld, S. and Mühling, J., “Computer Assisted Oral and Maxillofacial Surgery - A Review and an Assessment of Technology,” Int. J. Oral Maxillofac. Surg. 30: 2-13, 2001.
7. Brief, J., Hassfeld, S., Sonnenfeld, U., Verstrken, K., Van Claynembreugel, J., Martens, K., Marchal, G., Van Steenberghe, D., Suetens, P., “An Image-guided Planning System for Endosseous Oral Implants,” IEEE Trans Med Imaging, Vol. 16, pp. 842-852,1998.
8. Yasuda, T., Hashimoto, Y., Yokoi, S., and Toriwaki., J., “Computer system for Craniofacial Surgical Planning Based on CT Images, ” IEEE Trans. Medical Imaging, Vol. 9, No. 3, pp. 270-280, Sept. 1990.
9. Voss, G., Hahn J.K., Muller, W., Lindeman, R., “Virtual cutting of anatomical structures,” Studies in Health Technology Informatics, 62:381-3, 1999.
10. Neumann, P., Siebert D., Faulkner, G., Krauss, M., Schulz, A., Lwowsky, C., Tolxdorff, T., “Virtual 3D cutting for bone segment extraction in maxillofacial surgery planning,” Studies in Health Technology Informatics, 62: 235-41., 1999.
11. Teschner, M., Girod, S., Girod, B., “3-D simulation of craniofacial surgical procedures,” Studies in Health Technology Informatics, 81: 502-8, 2001.
12. Zhao, L., Patel, P.K., Widera, G.E.O., Han, H., Harris, G.F., “Medical imaging genesis for finite element-based mandibular surgical planning in the pediatric subject,” Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE Volume 3, 25-28, pp. 2509 – 2512, Oct. 2001.
13. Keeve, E., Girod, S., Kikinis, R., Girod, B., “Deformable Modeling of Facial Tissue for Craniofacial Surgery Simulation,” Computer Aided Surgery, John Wiley & Sons Inc., New York, invited paper, Vol. 3, No. 5, pp. 228-238, 1998.
14. Gao, J., Zhou, M., Wang, H., Zhang, C., “Three dimensional surface warping for plastic surgery planning,” 2001 IEEE International Conference on Systems, Man, and Cybernetics, Volume 3, 7-10 pp. 2016 – 2021, Oct. 2001.
15. http://www.amiravis.com/
16. http://www.slicer.org/
17. Gering, D., Nabavi, A., Kikinis, R., Hata, N., Odonnell, L., Eric, W., Grimson, L., Jolesz, F., Black, P., WellsIII, W., “An Integrated Visualization System for Surgical Planning and Guidance Using Image Fusion and an Open MR,” Journal of Magnetic Resonance Imaging, Vol 13, pp. 967-975, June, 2001.
18. Nain, D., Haker, S., Kikinis, R., Grimson, E., “An Interactive Virtual Endoscopy Tool,” In Proceedings of IMIVA 2001, workshop of MICCAI 2001, Utrecht, The Netherlands. Oct. 2001.
19. Pohl, K.M., Bouix, S., Kikinis, R., Grimson, W.E.L., “Anatomical Guided Segmentation With Non-Stationary Tissue Class Distributions in an Expectation-Maximization Framework,” IEEE International Symposium on Biomedical Imaging: Macro to Nano 2004, pp. 81-84, April 2004.
20. http://www.mipg.upenn.edu/
21. http://www.ablesw.com/3d-doctor/
22. http://www.materialise.com/
23. Watt, A., 3D Computer Graphic 3rd ed., Addison-Wesley, 2000.
24. Drebin, R. A., Carpenter, L., Hanrahan, P., “Volume Rendering,” Computer Graphics, Vol. 22, No. 4, August 1988.
25. Knittel, G., “The ULTRAVIS system,” Proceedings of IEEE Symposium on Volume Visualization, Salt Lake City, October 2000.
26. Cabral, B., Cam, N., and Foran, J., “Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware,” Proceedings of IEEE Symposium on Volume Visualization, pp. 91-98, Washington DC, October 1994.
27. Garcia, A., Shen, H.W., “An Interleaved Parallel Volume Renderer with PC-clusters,” EGPGV 2002: 51-59.
28. Pfister, H., Hardenbergh, J., Knittel, J., Lauer, H., and Seiler, L., “The VolumePro Real-Time Ray-Casting System,” Computer Graphics (ACM SIGGRAPH), pp. 251-260, Los Angeles, August 1999.
29. Shareef, N., Yagel, R., “Rapid previewing via volume-based solid modeling,” Proceedings of the third ACM symposium on Solid modeling and applications, pp. 281 – 291, 1995.
30. Lacroute, P. and Levoy, M., “Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation,” Proc. SIGGRAPH '94, Orlando, Florida, pp. 451-458, July 1994.
31. Treece, G.M., Prager, R.W., Gee, A.H., Berman, L., “Surface Interpolation from Sparse Cross Sections Using Region Correspondence,” IEEE Transactions on Medical Imaging, Volume 19, Issue 11, pp. 1106-1114, Nov. 2000.
32. Barequet, G., Goodrich M.T., Levi-Steiner, A., Steiner, D., “Straight-skeleton Based Contour Interpolation,” SODA 2003, pp. 119-127. 2002.
33. Lorensen, W.E. and Cline, H.E., “Marching Cubes: A High Resolution 3D Surface Construction Algorithm”, SIGGRAPH’87 Proc., vol. 21, pp. 163-169, 1987.
34. Neilson, G.M. and Hamann, B., “「The Asymptotic Decider」Resolving the Ambiguity in Marching Cubes”, Proc. IEEE Visualization 1991, pp. 83-91, Oct. 1991.
35. Lin, C.F., Yang, D.L., Chung, Y.C., “A marching voxels method for surface rendering of volume data,” International Proceedings on Computer Graphics, pp.306 - 313, July 2001.
36. Shekhar, R., Fayyad, E., Yagel, R., Cornhill, J.F., “Octree-based decimation of marching cubes surfaces,” Proceedings on Visualization, pp. 335 - 342, 499, Nov. 1996.
37. Kaneko, T. and Yamamoto, Y., “Volume-Preserving Surface Reconstruction from Volume Data,” Proceedings of IEEE International Conference on Image Processing, Vol. 1, pp. 145-148, Oct. 1997.
38. Hilton, A., Stoddart, A.J., Illingworth, J., and Windeatt, T., “Marching Triangles: Range Image Fusion for Complex Object Modeling,” Proceedings of IEEE International Conference on Image Processing, pp. 381-384, vol. 2, Sept. 1996.
39. Wolberg, G., “Digital Image Warping,” IEEE Computer Society Press, 1990.
40. Cohen-Or, D., Levin, D., and Solomovici, A., “Contour Blending Using Warp-Guided Distance Field Interpolation,” Proceedings on Visualization, pp. 165 - 172, Nov. 1996.
41. Cohen-Or D., Solomovici, A., and. Levin, D., “Three-Dimensional Distance Field Metamorphosis,” ACM Transactions on Graphics, Volume 17 , Issue 2 , pp. 116 – 141, 1998.
42. Alexa, M., Cohen-Or, D., Levin, D., “As-rigid-as-possible shape interpolation,” Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 157 - 164 , 2000.
43. Enciso, R., Lewis, J.P., Neumann, U., Mah, J., “3D tooth shape from radiographs using thin-plate splines,” Stud Health Technol Inform. 94, pp. 62-4, 2003.
44. Fang, S., Raghavan, R. and Richtsmeier, J., “Volume Morphing Methods for Landmark Based 3D Image Deformation,” SPIE vol 2710, pp. 404-415, Feb 1996.
45. Carr, J.C., Fright, W.R., Beatson, R.K., “Surface Interpolation with Radial Basis Functions for Medical Imaging,” IEEE Transactions on Medical Imaging, Volume: 16 , Issue: 1 , pp. 96 – 107, Feb. 1997.
46. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R., “Reconstruction and Representation of 3D Objects with Radial Basis Functions,” Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 67 – 76, 2001.