簡易檢索 / 詳目顯示

研究生: 朱承軒
Chu, Chen-Shane
論文名稱: 溶膠-凝膠基體參雜奈米粒子在高靈敏度光纖氧氣與二氧化碳感測器之研究
The Study of Highly Sensitive Optical Fiber Oxygen and Carbon Dioxide Sensors Based on Sol-Gel Matrix Doped with Nanoparticles
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 109
中文關鍵詞: 溶膠-凝膠二氧化矽粒子核-殼粒子氧氣二氧化碳全場光纖
外文關鍵詞: optical fiber, carbon dioxide, core-shell particles, silica particles, sol-gel, oxygen, full field
相關次數: 點閱:90下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光纖感測系統具有多工量測的能力以及多項優點,例如:體積小、質量輕、靈敏度高、反應速度快,有優異的彈性設計與適應性,可以在惡劣的環境中作長期的監測。同時具有高可靠度,可以作動態即時量測以及遠端監控量測;量測系統架設簡單容易,並且可以做多參數以及多點的監測,本文欲利用光纖以上之優點,利用光纖作為感測器並且用來分別監控氧氣與二氧化碳濃度,本研究所開發之光纖氧氣與二氧化碳感測器具有高靈敏度與快速的反應時間。
    本研究利用一種簡單、低成本的技術去製作高靈敏度光纖氧氣感測器,此技術是利用溶膠-凝膠(sol-gel process)的方法合成出微孔性薄膜材料,以及利用modified Stber方法將氧氣感測材料包在二氧化矽粒子(silica particles)中形成核-殼粒子(core-shell particles),最後將核-殼粒子(core-shell particles)與platinum(II) complex [platinum(II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP)]加入sol-gel matrix中再將之塗佈在光纖端面,經由LED (405 nm)光源的激發而產生放射螢光(650nm),此放射螢光強度會隨著氧氣濃度之不同而改變。本研究所開發的光纖氧氣感測器之靈敏度(IN2/IO2)可達166,其中IN2為感測器在氮氣環境下之放射螢光強度,IO2為感測器在氧氣環境下之放射螢光強度。感測器之反應時間分別為1.3秒(放射螢光強度由100%氮氣變化到100%氧氣之所需時間)與18.6秒(放射螢光強度由100%氧氣變化到100%氮氣之所需時間)。
    另一方面作者也提出了高性能的光纖二氧化碳感測器,其技術同樣利用溶膠-凝膠的方法合成出微孔性薄膜材料,另外利用Stber方法製作出奈米級的二氧化矽粒子,將此奈米級的二氧化矽粒子與二氧化碳感測材料HPTS結合加入溶膠-凝膠基體(sol-gel matrix)中,再將感測材料塗佈在光纖端面,利用藍光LED (470 nm)作為激發光源,此時二氧化碳感測材料會產生520 nm波段的放射螢光,此放射螢光強度會隨著二氧化碳濃度之不同而改變。本研究所開發的光纖二氧化碳感測器之靈敏度(IN2/ICO2)可達26。其反應時間分別為9.8秒(放射螢光強度由100%氮氣變化到100%二氧化碳之所需時間)與195.4秒(放射螢光強度由100%二氧化碳變化到100%氮氣之所需時間)。
    除此之外作者也利用modified Stern-Volmer model去修正光纖氧氣感測器所產生的放射螢光強度會隨著溫度變化的現象。以及結合溫度感測材料(epoxy glue)與氧氣感測材料(PtTFPP),分別將溫度感測材料與氧氣感測材料塗佈在拋光的光纖側面與端面。利用一個UV LED (380nm)作為激發光源去同時激發溫度與氧氣感測材料而產生不同波段的放射螢光,在頻譜中可以同時分析溫度與氧氣感測材料所產生放射螢光的強度,並且在頻譜中不會有串音的現象發生,進而去同時分析當時之溫度與氧氣濃度。另外關於外界光源影響對氧氣感測器之影響,作者也提出了結合參考材料與氧氣感測材料的方法,將參考材料與氧氣感測材料一起加入溶膠-凝膠基體(sol-gel matrix)中並且將之塗佈在光纖端面,利用一個LED去同時激發參考材料與氧氣感測材料而產生兩個不會相互干涉的放射螢光波段,並且參考材料所產生的放射螢光強度不會隨著氧氣濃度而改變,利用此一參考材料所產生的放射螢光就可以消除外界光源對於光纖氧氣感測器所造成的影響。
    最後,作者利用全場式光學量測系統結合CPLD (Complex Programmable Logic Device) 與影像處理演算法,去進行全場之氧氣濃度感測,希望可以將此量測系統應用在細胞表面氧氣濃度消耗量的量測。

    The past two decades have seen a rapidly growing interest in the field of optical fiber sensors. This growth in interest has been brought into effect mainly by the advances made in the related field like opto-electronics and biological. Some of the principal reasons for the popularity of optical fiber based sensor systems are small size, light weight, immunity to electromagnetic interference (EMI), passive (all dielectric) composition, high temperature performance, large bandwidth, higher sensitivity as compared to existing techniques, and multiplexing capabilities.
    A simple, low-cost technique for the fabrication of optical fiber sensor for oxygen is described and preliminary results obtained using the sensor is reported. The technique is based on coating the end of an optical fiber with a microporous film prepared by the sol-gel process. The author presented a highly-sensitive oxygen sensor comprising an optical fiber coated at one end with platinum(II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) and PtTFPP entrapped core-shell particles embedded in an tetraethylorthosilane (TEOS)/n-octyltriethoxysilane (Octyl-triEOS) composite xerogel. The sensitivity of the oxygen sensor is quantified in terms of the ratio IN2/IO2, where IN2 and IO2 represent the detected fluorescence intensities in pure nitrogen and pure oxygen environments, respectively. The experimental results reveal that the oxygen sensor has a sensitivity of 166. Moreover, the response time is found to be 1.3 s when switching from pure nitrogen to pure oxygen, and 18.6 s when switching in the reverse direction.
    On the other hand, the author presented a high-performance optical fiber carbon dioxide (CO2) sensor based on sol-gel matrix composed of alkyl and perfluoroalkyl ORMOSILs (organically modified silicates) doped with pH-sensitive fluorescent dye and silica particles. The sensor film consists of 1-hydroxy-3,6,8-pyrenetrisulfonic acid trisodium salt (HPTS, PTS-), silica particles, tetraoctylammonium cation (TOA+), and a tetraoctylammonium hydroxide (TOAOH) phase transfer agent (i.e. the base) immobilized within the sol-gel matrix. The experimental results indicate that the relative fluorescence intensity of the HPTS dye decreases as the CO2 gas phase concentration increases. The sensor has a sensitivity of approximately 26. The response time of the sensor is 9.8 s when switching from a pure nitrogen atmosphere to a pure CO2 atmosphere and 195.4 s when switching from CO2 to nitrogen.
    Furthermore, the author developed a modified Stern-Volmer model to compensate for the temperature drift of oxygen concentration measurements obtained using optical fiber sensors. In addition, the author also presented a plastic optical fiber sensor for dual sensing of temperature and oxygen. The sensor features commercially available epoxy glue coated on the side-polished fiber surface for temperature sensing and a fluorinated xerogel doped with platinum tetrakis pentrafluoropheny porphine (PtTFPP) coated on the fiber end for oxygen sensing. The temperature and oxygen indicators are both excited using a ultraviolet light emitting diode (UV LED) light source with a wavelength of 380 nm. The fluorescence emission spectra of the two indicators are well resolved and exhibit no cross-talk effects. The ratiometric sensing approach presented in here has the advantage of suppressing the effects of spurious fluctuations in the intensity of the excitation source and optical transmission properties of the optial fiber.
    In the effects of spurious fluctuations in the intensity of the excitation source, the author also presented ratiometric optical fiber oxygen sensors incorporating a sol-gel matrix doped with platinum or palladium tetrakis pentafluorophenyl porphine (PtTFPP or PdTFPP) metalloporphyrins as the oxygen-sensitive material and 7-amino-4-trifluoromethyl coumarin (AFC) as the reference dye. Using an LED with a central wavelength of 405 nm as an excitation source, it is shown that the emission wavelengths of the oxygen-sensitive dye and the reference dye have no spectral overlap and therefore permit the oxygen concentration to be measured using a ratiometric-based method.
    Finally, the author introduced a full-field system combined with the CPLD (Complex Programmable Logic Device) and image processing algorithm to implement the full-field oxygen concentration measurements. In the next step, the author would like to utilize the full-field system in this study to measure the cell surface oxygen consumption.

    中文摘要...................................................I Abstract.................................................III Acknowledgments...........................................VI Table of Contents........................................VII List of Figures...........................................XI List of Tables...........................................XVI Nomenclature............................................XVII Chapter 1 Introduction.....................................1 1.1 Optical oxygen sensors.................................2 1.2 Optical carbon dioxide sensors.........................3 1.3 Optical sensors performance............................6 1.4 Dissertation preview...................................7 Chapter 2 Optical Fiber Oxygen Sensors....................10 2.1 Basic theory..........................................11 2.2 Experimental setup....................................11 2.3 Optical properties of PtTFPP-doped and PtOEP-doped oxygen sensors............................................12 2.4 Oxygen sensing properties of PtTFPP-doped and PtOEP-doped oxygen sensors......................................13 2.4.1 Preparation of PtTFPP-doped and PtOEP-doped in TEOS/Octyl-triEOS composite sols oxygen sensors...........14 2.4.2 Optical Sensing Properties of PtTFPP-doped and PtOEP-doped in TEOS/Octyl-triEOS composite sols.................15 2.4.3 Response times of PtTFPP-doped and PtOEP-doped in TEOS/Octyl-triEOS composite sols..........................17 2.4.4 Preparation of PtTFPP-doped and PtOEP-doped in n-propyl-TriMOS/TFP-TriMOS composite sols oxygen sensors....18 2.4.5 Optical Sensing Properties of PtTFPP-doped and PtOEP-doped in n-propyl-TriMOS/TFP-TriMOS composite sols........19 2.4.6 Response times of PtTFPP-doped and PtOEP-doped in n-propyl-TriMOS/TFP-TriMOS composite sols...................21 2.4.7 Temperature effects of PtTFPP-doped and PtOEP-doped in n-propyl-TriMOS/TFP-TriMOS composite sols..............22 2.5 Oxygen sensing properties of PtTFPP and dye entrapped core-shell particles embedded in sol-gel matrix...........24 2.5.1 Synthesis of PtTFPP entrapped core-shell particles..25 2.5.2 Synthesis of silica particles.......................26 2.5.2 Sol-gel process.....................................27 2.5.3 Oxygen sensing properties of PtTFPP-doped sensors...31 2.5.4 Response time of PtTFPP-doped sensors...............35 2.6 Ratiometric optical fiber oxygen sensors..............37 2.6.1 Fabrication of ratiometric optical fiber oxygen sensors...................................................38 2.6.2 Optical properties of PtTFPP-doped and PdTFPP-doped sensors...................................................39 2.6.3 Oxygen sensing properties of PtTFPP-doped and PdTFPP-doped sensors.............................................40 2.6.4 Response time of PtTFPP-doped and PdTFPP-doped sensors...................................................42 2.6.5 Photostability of PtTFPP-doped and PdTFPP-doped sensors...................................................43 2.7 Discussion............................................44 Chapter 3 Temperature Compensation of Fluorescence Intensity.................................................46 3.1 Modified S-V model for temperature compensation.......48 3.2 Experimental setup....................................50 3.3 Oxygen sensing properties of PtTFPP in TEOS/Octyl-triEOS or n-propyl-TriMOS/TFP-TriMOS......................51 3.4 Temperature-compensated measurement of oxygen concentration.............................................56 3.5 Discussion............................................60 Chapter 4 Plastic Optical Fiber Dual Sensor...............62 4.1 Basic theory..........................................64 4.1.1 Optical oxygen sensor...............................64 4.1.2 Optical temperature sensor..........................65 4.2 Experimental setup....................................65 4.3 Optical properties of dual sensor.....................66 4.3.1 Temperature sensing properties......................67 4.3.2 Oxygen sensing properties...........................69 4.4 Discussion............................................71 Chapter 5 Optical Fiber Carbon Dioxide Sensor.............73 5.1 Basic theory..........................................73 5.2 Experimental setup....................................75 5.3 Optical properties of HPTS-doped sensor...............76 5.3.1 Preparation of optical fiber carbon dioxide sensor..77 5.3.2 Optical properties of HPTS-based sensor doped.......78 5.3.3 Carbon dioxide sensing properties of HPTS-based sensor....................................................78 5.3.4 Response times of HPTS-based sensor.................80 5.4 Optical properties of HPTS-based sensor doped with silica particles..........................................80 5.4.1 Synthesis of silica particles.......................81 5.4.2 Preparation of optical fiber carbon dioxide sensor and sol-gel process.......................................82 5.4.3 Carbon dioxide sensing properties of HPTS-based sensor doped with silica particles........................83 5.4.3 Response time of HPTS-based sensor doped with silica particles.................................................85 5.5 Discussion............................................87 Chapter 6 Full Field Oxygen Measurement...................88 6.1 Basic Theory..........................................88 6.1.1 Sinusoidal phase modulation with integrating-bucket method....................................................88 6.1.2 Four integrating-bucket method......................90 6.2 Experimental setup....................................92 6.3 Experiment Results....................................93 6.3.1 Electronic device configuration.....................93 6.3.2 Phase and modulation measurement....................94 6.3.3 Four-frame integrating bucket method................95 6.4 Discussion............................................98 Chapter 7 Conclusions and Future Works....................99 7.1 Conclusions...........................................99 7.2 Future works.........................................100 Reference................................................102 Bibliography.............................................109

    Allison, S. W., and Gillies, G. T., “Remote thermometry with thermographic phosphors: inststrumentation and applications,” Rev. Sci. Instrum. 68 (1997) 2615-2650.

    Amao, Y., Miyashita, T., and Okura, I., “Platinum tetrakis(pentafluorophenyl)porphyrin immobilized in polytrifluoroethylmethacrylate film as a photostable optical oxygen detection material,” J. Fluor. Chem. 107 (2001) 101-106.

    Atkins, G. R., and Charters, R. B., “Optical properties of highly fluorinated and photosensitive organically-modified silica films for integrated optics,” J. Sol-Gel Sci. Technol. 26 (2003) 919-923.

    Borisov, S. M., and Wolfbeis, O. S., “Temperature-sensitive europium(III) probes and their use for simultaneous luminescent sensing of temperature and oxygen,” Anal. Chem. 78 (2006) 5094–5101.

    Borisov, S. M., Vasylevska, A. S., Krause, C., and Wolfbeis, O. S., “Composite luminescent material for dual sensing of oxygen and temperature,” Adv. Mater. 16 (2006) 1536-1542.

    Bukowski, R. M., Ciriminna, R., Pagliaro, M., and Bright, F. V., “High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)(3)](2+),” Anal. Chem. 77 (2005) 2670-2672.

    Campostrini, R., Ischia, M., Carturan, G., and Armelao, L., “Sol-gel synthesis and pyrolysis study of oxyfluoride silica gels,” J. Sol-Gel Sci. Technol. 23 (2002) 107-117.

    Cao, Y. F., Koo, Y. L. E., and Kopelman, R., “Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples,” Analyst 129 (2004) 745-750.

    Carraway, E. R., Demas, J. N., DeGraff, B. A., and Bacon, J. R., “Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,” Anal. Chem. 63 (1991) 337-342.

    Caruso, F., Spasova, M., Salgueirino-Maceira, V., and Liz-Marzan, L. M., “Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates,” Adv. Mater. 13 (2001) 1090-1094.

    Chang, Q., Zhu, L. H., Yu, C. and Tang, H. Q., “Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2,” J. Lumines., 128 (2008) 18930-1895.

    Chu, C. S., and Lo, Y. L., “High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes,” Sens. Actuators B Chem. 124 (2007) 376-382.

    Chu, C. S., and Lo, Y. L., “Fiber Optic Carbon Dioxide Sensor Based on Fluorinated Xerogels Doped With HPTS,” Sens. Actuators B Chem. 129 (2008) 120-125.

    Coyle, L. M., and Gouterman, M., “Correcting lifetime measurements for temperature,” Sens. Actuators B Chem. 61 (1999) 92-99.

    Demas, J. N., Degraff, B. A., and Coleman, P. B., “Oxygen sensors based on fluorescence quenching,” Anal. Chem. 71 (1999) 793A- 800A.

    Demas, J. N., DeGraff, B. A., and Xu, W., “Modeling of luminescence quenching based sensors comparison of multisite and nonlinear gas solubility models,” Anal. Chem. 67 (1995) 1377-1380.

    Douglas, P., and Eaton, K., “Response characteristics of thin film oxygen sensors, Pt and Pd octaethylporphyrins in polymer films,” Sens. Actuators B Chem. 82 (2002) 200-208.

    Dubois, A., “Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets,” J. Opt. Soc. Am. A 18 (2001) 1972-1979.

    Ethiraj, A. S., Hebalkar, N., Kharrazi, S., Urban, J., Sainkar, S. P., and Kulkarni, S. K., “Photoluminescent core-shell particles of organic dye in silica,” J. Lumines. 114 (2005) 15-23.

    Gewehr, P. M., and Delpy, D. T., “Optical oxygen sensor based on phosphorescence lifetime quenching and employing a polymer immobilized metalloporphyrine probe. Part 1 Theory and Instrumentation,” Med. Biol. Eng. Comput. 31 (1993) 2-10.

    Gouin, S., and Gouterman, M., “Ideality of pressure-sensitive paint. II. effect of annealing on the temperature dependence of the fluorescence,” J. Appl. Polym. Sci. 77 (2000) 2805-2814.

    Gouin, S., and Gouterman, M., “Ideality of pressure-sensitive paint. IV. improvement of fluorescence behavior by addition of pigment,” J. Appl. Polym. Sci. 77 (2000) 2824-2831.

    Guo, S. R., Gong, J. Y., Jiang, P., Wu, M., Lu, Y., and Yu, S. H., “Biocompatible, luminescent silver@phenol formaldehyde resin core/shell nanospheres: Large-scale synthesis and application for in vivo biomaging,” Adv. Funct. Mater. 18 (2008) 872-879.

    Han, B. H., Manners, I., and Winnik, M. A., “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17 (2005) 3160-3171.

    He, X., and Rechnitz, G. A., “Linear response function for fluorescence-based fiber-optic CO2 sensors,” Anal. Chem. 67 (1995) 2264-2268.

    Kane, J., Martin, R., and Perkovich, A., “Ratiometric fluorescence method of making for measuring oxygen,” US Patent 5,728,422 (1998).

    Koo, Y. L. E., Cao, Y. F., Kopelman, R., Koo, S. M., Brasuel, M., and Philbert, M. A., “Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors,” Anal. Chem. 76 (2004) 2498–2505.

    Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 2nd ed; Kluwer Academic/ Plenum Press, New York, 1999, Chapter 8 and 9.

    Lam, S. K., Chan, M. A., and Lo, D., “Characterization of phosphorescence oxygen sensor based on erythrosine B in sol-gel silica in wide pressure and temperature ranges,” Sens. Actuators B Chem. 73 (2001) 135-141.

    Lee, I. L., Design and construction of a full-field three dimensional transient strain metrology system, Master thesis, Institute of Applied Mechanics, National Taiwan University (2004).

    Lee, S. K., Shin, Y. B., Pyo, H. B., and Park, S. H., “Highly sensitive optical oxygen sensing material: Thin silica xerogel doped with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium,” Chem. Lett. 4 (2001) 310-311.

    Lee, S. K., and Okura, I., “Photostable optical oxygen sensing material: platinum tetrakis(pentafluorophenyl)porphyrin immobilized in polystyrene,” Anal. Commun. 34 (1997) 185-188.

    Lee, S. K., and Okura, I., “Porphyrin-doped sol-gel glass as probe for oxygen sensing,” Anal. Chim. Acta 342 (1997) 181-188.

    Lehrer, S. S., “Solute perturbation of protein fluorescence. Quenching of tryptophyl fluorescence of model compounds and of lysozyme iodide ion,” Biochemistry 10 (1971) 3254-3263.

    Lev, O., Tsionsky, M., Rabinovich, L., Glezer, V., Sampath, S., and Pankratov, I., “Organically modified sol-gel sensors,” Anal. Chem. 67 (1995) 22A-30A.

    MacCraith, B. D., McDonagh, C. M., O’Keeffe, G., Keyes, E. T., Vos, J. G., O’Kelly, B., and McGilp, J. F., “Fiber optic oxygen sensor based on fluorescence quenching of evanescent wave excited rutthenium complex in sol gel derived porous coatings,” Analyst 118 (1993) 385-388.

    Malins, C., and MacCraith, B. D., “Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection,” Analyst 123 (1998) 2373-2376.

    Manuccia, T. J., and Eden, J. G., “Infrared optical measurement of blood gas concentrations and fiber optic catheter,” U. S. Patent 4,509,522, (1985).

    McDonagh, C., MacCraith, B. D., and McEcoy, A. K., “Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase,” Anal. Chem. 70 (1998) 45-50.

    Mills, A., Chang, Q., and McMurray, N., “Equilibrium studies on colorimetric plastic film sensors for carbon dioxide,” Anal. Chem. 64 (1992) 1383-1389.

    Mills, A., and Chang, Q., “Fluorescence plastic thin-film sensor for carbon dioxide,” Analyst 118 (1993) 839-843.

    Munkholm, C., Walt, D. R., and Milanovich, F. P., “A fiber-optic sensor for CO2 measurement,” Talanta 35 (1988) 109-112.

    Nivens, D. A., Schiza, M. V., and Angel, S. M., “Multilayer sol-gel membranes for optical sensing applications: single layer pH and dual layer CO2 and NH3 sensors,” Talanta 58 (2002) 543-550.

    Santra, S., Wang, K. M., Tapec, R., and Tan, W. H., “Development of novel dye-doped silica nanoparticles for biomarker application,” J. Biomed. Opt. 6 (2001) 160-166.

    Stber, W., Fink, A., and Bohn, E., “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26 (1968) 62-69.

    Stumpf, K. D., “Real-time interferometer,” Opt. Eng. 18 (1979) 648-653.

    Wang, X. Y., Drew, C., Lee, S. H., Senecal, K. J., Kumar, J., and Sarnuelson, L. A., “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett., 11 (2002) 1273-1275.

    Xu, W., McDonough, R. C., Langsdorf, B., Demas, J. N., and DeGraff, B. A., “Oxygen sensors based on luminescence quenching interactions of metal complexes with the polymer supports,” Anal. Chem. 66 (1994) 4133-4141.

    下載圖示 校內:2015-07-09公開
    校外:2015-07-09公開
    QR CODE