| 研究生: |
洪大祐 Hung, Ta-You |
|---|---|
| 論文名稱: |
加入預壓條件之有限元素模型模擬膝下殘肢與義肢承筒間之介面壓力分佈 The Investigation on Interface Pressures Between Below-Knee Residual Limb and Socket Using a Pre-Stress Nonlinear Finite Element Model |
| 指導教授: |
許來興
Hsu, Lai-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 義肢承筒 、殘肢 、擬靜態 、預壓 、有限元素分析 |
| 外文關鍵詞: | quasi-static, pre-stress, finite element analysis, stump, prosthetic socket |
| 相關次數: | 點閱:120 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於義肢承筒是依據殘肢曲面編修完成的形狀所設計,所以承筒內表面必和殘肢外表面形狀有所不同,表示殘肢在穿入承筒之後即有預壓(pre-stress)存在。本研究之重點,在於建立殘肢與承筒有限元素模型,模擬殘肢穿上承筒後站立時殘肢的壓力分佈;將藉由步態實驗及承筒壓力量測設備實驗,由力板所得到的反作用力,經座標轉換作為擬靜態邊界條件,配合預壓條件模擬殘肢穿上承筒後,在站立週期殘肢的表面壓力分佈變化,以觀察經由殘肢外表面編修出來的承筒是否符合殘肢的可受壓區以及非受壓區之承受能力。
由有限元素分析結果顯示,主要的受壓部位有髕骨韌帶、脛骨內側緣、前脛肌、脛骨內側突出、膕窩部及腓腸比目魚肌,非受壓部位有脛骨脊、腓骨末端,大部分都符合殘肢可受壓區以及非受壓區之設計需求,唯不應受力之腓骨頭有受到壓力,表示承筒可針對此部位再加以編修。與實驗所量測的結果比較,發現在站立週期下,壓力變化的趨勢相近,表示本研究加入預壓條件之有限元素模型具有一定的合理性。即本研究之有限元素分析模型,已由實驗結果驗證其合理性。
This study focused on establishing finite element (FE) models that will be used to investigate the pressure distribution of the stump while wearing a prosthesis. For a transtibial amputee when the loads exerting on his/her residual limb, the sensitive areas (like tibia crest, tibia end, fibula head and fibula end) should not bear loads and the non-sensitive areas (such as patellar tendon, medial tibia flare, popliteral fossa and calf muscle) should be the main regions to support the loads. Therefore, the prosthetic socket should be designed based on the modified shape of stump. It means that the internal shape of the socket is different from the external shape of stump. In these FE models the initial pre-stress condition on stump is then considered due to some regions of stump being pressed once socket is worn.
During stance phase of a prosthesis, the pressure distribution on stump can also be estimated by the FE models with quasi-static loading condition based on the reaction forces measured by a force plate. To verify the FE simulation results, a novel Pliance pressure measuring system is used. According to the experimental results, the FE models with initial pre-stress and quasi-static loading conditions proposed in this study can be employed to evaluate the pressures on stump. Once pressure distribution has been approved by a prosthetist, the geometric shape of a prosthetic socket for a specific stump can be determined and the CAD socket model will then be utilized for manufacturing purpose.
[Ferg 95] Fergason J, Smith DG. Socket considerations for the patient with a transtibial amputation. Clinical Orthopaedics & Related Research, (361):76-84, 1999.
[Faus 05] Faustini MC, Neptune RR, Crawford RH. The quasi-static response of compliant prosthetic sockets for transribial amputees using finite element methods. Medical Engineering & Physics, Vol. 27, No. 37, pp. 1371-1377, 2005.
[Gage 85] Gage JR, Hicks R. Gait analysis in prosthetics, Clinical Prosthetics and Orthotics, 9: 3: 17-23, 1985.
[Gitt 91] Gitter A, Czerniecki JM, DeGroot DM. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am J Phys Med Recabil, 70: 142-8, 1991.
[Hann 84] Hannah RE, Morrison JB, Chapman AE. Prostheses
alignment: effect on gait of persons with below-knee
amputations. Archives of Physical Medicine and Rehabilitation,65, 159-162, 1984.
[Kay 75] Kay HW, Newman JD. Relative incidences of new amputations. Orthot Prosthet Vol.29, No.2, pp.3-16, 1975.
[Orth 01] OrthoTrak 5.0 Gait Analysis Software ,Motion Analysis Corporation 3617 Westwind Blvd. Sanata Rosa, CA, USA 95403, 2001.
[Perr 92] Perry J. Gait Analysis: Normal and Pathological Function, Slack Inc., Thorofare, New Jersey, USA, 1992.
[Ques 91] Quesasa P, Skinner HB. Analysis of a Below-Knee Patellar Tendon-Bearing Prosthesis: a Finite Element Study. Journal of Rehabilitation Research & Development, Vol. 28, No. 3, pp. 1-12, 1991.
[Robi 97] Robinson JL, Smidt GL, Arora JS. Accelerographic,temporal and distance gait factors in below-knee amputees. Phys Ther.Vol.57, pp. 898-904, 1977.
[Reyn 92] Reynolds DP, Lord M. Interface Load Analysis for Computer-Aided Design of Below-Knee Prosthetic sockets. Medical and Biological Engineering and Computing, Vol. 30, pp. 419-426, 1992.
[Suth 80] Sutherland DH, Olshen RA, Cooper L, Woo SLY. The
development of mature walking. J Bone Joint Surg, Vol.62-A, No.3, pp. 336-353, 1980.
[Stee 87] Steege JW, Schnur DS. Prediction of Pressure at the Below-Knee Socket Interface by Finite Element Analysis. ASME Symposium on the Biomechanics of Normal and Pathological Gait, Boston, Vol. l4, pp. 39-43, 1987.
[Shur 90] Shurr DG, Cook TM. Prosthetic and Orthotics. American Prosthetics Inc. 1990.
[Sand 93] Sanders JE, Daly CH. Normal and Shear Stresses on a Residual Limb in a Prosthetic Socket during Ambulation: Comparison of Finite Element Results with Experimental Measurements. Journal of Rehabilitation Research & Development, Vol. 30, No. 2, pp. 191-204, 1993.
[Sand 95] Sanders JE. Interface mechanics in external prosthetics: review of interface stress measurement techniques. Medical & biological engineering & computing, 33: 509-516, 1995.
[Silv 96] Silver-Thorn MB, Childress DS. Parametric Analysis Using the Finite Element Method to Investigate Prosthetic Interface Stresses for Persons with Trans-Tibial Amputation. Journal of Rehabilitation Research & Development, Vol. 33, No. 3, pp. 227-239, 1996.
[Wu 03] Wu CL, Chang CH, Hus AT, Lin CC, Chen SI, Chang GL. A proposal or the pre-evaluation protocol of below-knee socket design-integration pain tolerance with finite element analysis. 121 Journal of the Chinese Institute of Engineers, vol.26, no.6pp.853-860, 2003.
[Zhan 96] Zhang M, Turner-Smith AR, Roberts VC, Tanner A. Friction action at lower limb/prosthetic socket interface. Medical Engineering & Physics, Vol.18, No.3, pp.207-214, 1996.
[Zhan 97] Zhang M, Zheng YP, Mak AFT. Estimating the effective Young’s modulus of soft tissues from indentation tests-nonlinear finite element analysis of effects of friction and large deformation. Medical Engineering & Physics, Vol.19, No.6, pp.512-517, 1997.
[Zhan 98] Zhang M, Mak AFT, Roberts VC. Finite Element Modeling of a Residual Lower-Limb in a Prosthetic Socket: A Survey of the Development in the First Decade. Medical Engineering & Physics, Vol. 20, No. 5, pp. 360-373, 1998.
[Zhan 03] Zhang M, Jia X, Lee WCC. Load transfer mechanics between trans-tibial prosthetic socket and residual limb-Dynamic effects. Medical Engineering & Physics ,Vol. 25, No. 37, pp. 1371-1377, 2003.
[澤85] 澤村誠志著,蕭英宏譯,截肢義肢學,高雄縣私立樹人醫事職業學校復健技術科教學委員會編印,1985。
[楊 98] 楊世偉, 膝下義肢承筒之有限元素分析, 中華醫學工程學刊 18:203-208,1998。
[熊02] 熊大鈞,曲面偏置方法應用於殘肢受壓區與非受壓區之形狀修改,國立成功大學機械工程系,碩士論文,2002。
[Marc 03] MSC.Patran/Marc培訓課程和實例,美商麥格尼軒股份有限公司台灣分公司,台北,2003。
[黃 03] 黃健,拘束邊界之曲面多樣化編修應用於義肢承筒數位化設計,國立成功大學機械工程系,碩士論文,2003。
[楊 04] 楊沛霖,許來興,黃國峯,林罡生,石旭生,膝下截肢者之殘肢三維模型建立與介面應力分析,中國機械工程學會第二十一屆全國學術研討會論文集,2004。
[林 05] 林罡生,膝下殘肢與義肢承筒在不同行走速度下之介面應力分析,國立成功大學機械工程系,碩士論文,2005。
[陳 06] 陳彥名,應用CAD軟體API與快速成型技術製作義肢承筒,國立成功大學機械工程系,碩士論文,2006
[余 06] 余奕昌,應用CAD軟體API輔助膝下殘肢曲面之建模與編修,國立成功大學機械工程系,碩士論文,2006
[蕭 06] 蕭世祥,擬靜態有限元素模型分析膝下殘肢與義肢承筒之介面壓力,國立成功大學機械工程系,碩士論文,2006。
[陳、張 05] 陳信吉、張主聖,Marc有限元素實例分析,全華科技圖書股份有限公司,台北,2006。