簡易檢索 / 詳目顯示

研究生: 陳子良
Chen, Zih-Liang
論文名稱: AISI 4140合金鋼於低溫下之高速撞擊特性與微觀特性分析
Impact Behaviour and Microstructural Evolution of AISI 4140 Alloy Steel at Cryogenic Temperatures
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 120
中文關鍵詞: AISI 4140霍普金森撞擊試驗機應變速率塑流應力雙晶微滑移帶剪切帶
外文關鍵詞: AISI 4140, split-Hopkinson Pressure Bar, strain rate, flow stress, shear band, micro-slip, twinning
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用霍普金森撞擊試驗機,測試AISI 4140合金鋼在不同溫度及應變速率條件下之巨觀機械性質與微觀結構分析。實驗參數為溫度25℃、0℃、-150℃及應變速率2600s-1、4000s-1、5200s-1、6000s-1,分析材料在不同實驗條件下之撞擊塑性變形行為。根據實驗結果顯示,材料之巨觀機械性質會隨著溫度、應變速率、應變量的改變而有所差異。在固定溫度條件下,塑流應力值、加工硬化率、應變速率敏感性係數皆隨著應變速率提升而增加,而熱活化體積則會下降。在固定應變速率條件下,塑流應力值、加工硬化率、應變速率敏感性係數則會隨著實驗溫度下降而上升,熱活化體積則會下降。微觀結構分析部分,OM光學顯微鏡之結果可觀測出回火麻田散鐵組織以及絕熱剪切帶與裂縫形貌,而在TEM穿透式電子顯微鏡下,則有差排結構、微滑移帶、雙晶結構的出現並與實驗條件相關。透過差排密度與塑流應力值之連結,顯示材料之巨觀機械性質以及微觀結構之變化有密切的關係。最後,藉由Zerilli-Armstrong構成方程式,可精準的模擬AISI 4140合金鋼在不同溫度與應變速率條件下之塑性變形行為,並可提供未來產業上的實際應用。

    關鍵字 : AISI 4140、霍普金森撞擊試驗機、應變速率、塑流應力、剪切帶、微滑移帶、雙晶

    In this study, the split-Hopkinson pressure bar system was used to test the mechanical properties and microstructure analysis of AISI 4140 alloy steel under different temperature and strain rate conditions. The experimental examinations were performed at temperatures of 25℃, 0℃, -150℃ and strain rates of 2600s-1, 4000s-1, 5200s-1, 6000s-1, respectively. The experimental results indicate that the mechanical properties of AISI 4140 alloy steel are related to temperature, strain rate, and strain. Under constant temperature, the flow stress, work hardening rate, and strain rate sensitivity coefficient all increase with the increase of the strain rate, while the thermal activation volume decreases. For a fixed strain rate, the flow stress, work hardening rate, and strain rate sensitivity coefficient increase with the decrease of the temperature, but the thermal activation volume decreases. In the microstructure analysis, the optical microscope(OM) observation shows that both the tempered martensite structure and the crack within the adiabatic shear band are observed. Transmission electron microscope(TEM) observations found that the dislocation structure, micro-slip, and twinning appear on the deformed specimens. The flow stress varies with the square root of the dislocation density in accordance with the Bailey-Hirsch model. Finally, the impact deformation behavior is well described by the Zerilli-Armstrong constitutive equation.

    Key words: AISI 4140, split-Hopkinson Pressure Bar, strain rate, flow stress, shear band, micro-slip, twinning.

    中文摘要 I ABSTRACT II 致謝 IX 總目錄 X 表目錄 XII 圖目錄 XIII 符號說明 XIX 第一章 前言 1 第二章 理論與文獻回顧 3 2-1 鋼鐵之介紹 3 2-2 合金鋼之介紹 4 2-3 AISI 4140合金鋼 8 2-4 塑性變形之機械測試類別 9 2-5 一維波傳理論 11 2-6 霍普金森試驗機原理 13 2-7 材料塑性變形機制 15 2-7-1 恆溫機制 16 2-7-2 熱活化機制 17 2-7-3 差排黏滯機制 18 2-8 材料構成方程式 19 第三章 實驗方法與步驟 28 3-1 實驗流程 28 3-2 實驗儀器與設備 28 3-2-1 霍普金森撞擊試驗機 28 3-2-2 慢速切割機 30 3-2-3 研磨拋光機 30 3-2-4 雙噴式電解拋光機 30 3-2-5 微硬度試驗機(Vickers hardness test) 30 3-2-6 光學顯微鏡 31 3-2-7 掃描式電子顯微鏡(SEM) 31 3-2-8 穿透式電子顯微鏡(TEM) 32 3-3 實驗步驟 32 3-3-1 實驗試件備製 32 3-3-2 動態衝擊實驗 33 3-3-3 試件金相觀察(OM) 33 3-3-4 SEM試片製備 34 3-3-5 TEM試片製備 34 3-3-6 微硬度試驗 35 第四章 實驗結果與討論 37 4-1 應力-應變曲線 37 4-2 加工硬化率 38 4-3 應變速率敏感性係數 40 4-4 熱活化體積 40 4-5 活化能 42 4-6 溫度敏感性係數 43 4-7 理論溫升量 44 4-8 材料構成方程式 45 4-9 微硬度值 47 4-10 OM金相組織觀察 47 4-11 SEM破斷面觀察 49 4-12 TEM微觀結構分析 49 第五章 結論 110 參考文獻 113

    [1] A. R. Causey, G. J. C. Carpenter and S. R. Macewen, "In-Reactor Stress Relaxation of Selected Metals and Alloys at Low Temperatures", Journal of Nuclear Materials, Vol.90, Iss.1–3, pp.216-223, 1980.
    [2] F. Abed, C. ElSayegh, A. A. Latif, "Thermo-Mechanical Description of AISI4140 Steel at Elevated Temperatures", Proceedings of the TMS Middle East — Mediterranean Materials Congress on Energy and Infrastructure Systems, pp.491-499, 2015.
    [3] S. H. Choo, S. Lee, M. G. Golkovski, "Effects of accelerated electron beam irradiation on surface hardening and fatigue properties in an AISI 4140 steel used for automotive crankshaft", Materials Science and Engineering A, Vol.293, pp.56-70, 2000.
    [4] M. Zlatanović, N. Popović, M. Mitrić, "Plasma processing in carbon containing atmosphere for possible treatment of wind turbine components", Thin Solid Films, Vol.516, pp.228-232, 2007.
    [5] A. H. Meysami, R. Ghasemzadeh, S. H. Seyedein, M. R. Aboutalebi, "An Investigation on the Microstructure and Mechanical Properties of Direct-quenched and Tempered AISI 4140 Steel", Materials and Design, Vol.31, pp.1570-1575, 2010.
    [6] Y. C. Lin, M. S. Chen, J. Zhong, "Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel", Journal of Materials Processing Technology, Vol.205, pp.308-315, 2008.
    [7] M. M. Bilal, K. Yaqoob, M. H. Zahid, E. U. Haq, W. H. Tanveer, A. Wadood, B. Ahmed, "Effect of austempering conditions on the microstructure and mechanical properties of AISI 4340 and AISI 4140 steels", Journal of Materials Research and Technology, Vol.8, Iss.6, pp.5194-5200, 2019.
    [8] W. E. Hammond, NASA Marshall Space Flight Center, "Design Methodologies for Space Transportation System", AIAA Education Series, J. S. Przemieniecki, Editor-in-Chief, Published by American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, 2001.
    [9] W. S. Lee, C. R. Lin, "Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures", Cryogenics, Vol.79, pp.26-34, 2016.
    [10] W. S. Lee, Y. C. Huang, "Mechanical properties and dislocation substructure of 6061-T6 aluminum alloy impacted at cryogenic temperatures", Materials Transactions, Vol.57, No.3, pp.344-350, 2016.
    [11] W. Han, Y. Liu, F. Wan, P. Liu, X. Yi, Q. Zhan, D. Morral and S. Ohnuki, "Deformation behavior of austenitic stainless steel at deep cryogenic temperatures", Journal of Nuclear Materials, Vol.54, pp.29-32, 2018.
    [12] C. Zheng, C. Liua, M. Rena, H. Jianga, L. Lic, "Microstructure and mechanical behavior of an AISI 304 austenitic stainless steel prepared by cold- or cryogenic-rolling and annealing", Journal of Materials Science and Engineering A, Vol.724, pp.260-268, 2018.
    [13] M. A. Kariem, J. H. Beynon, D. Ruan, "Misalignment effect in the split Hopkinson pressure bar technique", International Journal of Impact Engineering, Vol.47, pp.60-70, 2012.
    [14] F. E. Hauser, "Techniques for Measuring Stress-Strain Relations
    at High Strain Rates", Experimental Mechanics, Vol.6, pp.395-402, 1966.
    [15] A. J. Holzer, R. H. Brown, "Mechanical Behavior of Metals in Dynamic Compression", Journal of Engineering Materials and Technology, Vol.101, pp.238-247, 1979.
    [16] S. N. Nasser, J. B. Isaacs, "Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Tasingle bondW alloys", Acta Materialia, Vol.45, Iss.3, pp.907-919, 1997.
    [17] W. D. Callister and D. G. Rethwisch, Fundamentals of Materials Science and Engineering.John Wiley & Sons, 2016.
    [18] M. A. Meyers, Dynamic behavior of materials. John wiley & sons, 1994.
    [19] U. S. Lindholm, "High strain rate tests", Measurement of mechanical properties, vol.5, No. Part1, pp.199-271, 1971.
    [20] J. E. Field, S. M. Walley, W. G. Proud, H. T. Goldrein and C. R. Siviour, "Review of experimental techniques for high rate deformation and shock studies", International Journal of Impact Engineering, vol.30, pp.725-775, 2004.
    [21] A. Bedford and D. S. Drumheller, Introduction to Elastic Wave Propagation.John Wiley & Sons, 1994.
    [22] J. Achenbach, Wave propagation in elastic solids.Elsevier, 2012.
    [23] B. Dodd, Adiabatic shear localization:occurrence, theories, and applications.Pergamon Press, 1992.
    [24] W. S. Lee, W. C. Sue, C. F. Lin and C. J. Wu, "The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy", Journal of Materials Processing Technology, Vol.100, Iss.1-3, pp.116-122, 2000.
    [25] S. Sharma, V. M. Chavan, R. G. Agrawal, R. J. Patel, R. Kapoor and J. K. Chakravartty, "Split Hopkinson pressure bar:An Experimental Technique for High Strain Rate Tests", INDIA, BHABHA ATOMIC RESEARCH CENTRE, 2011.
    [26] J. Fagbulu and O. Ajaja, "Dislocation distributions and creep mechanisms", Journal of materials science letters, Vol.6, no. 8, pp.894-896, 1987.
    [27] D. Klahn, A. Mukherjee, and J. Dorn, STRAIN-RATE EFFECTS, California Univ., Berkeley. Lawrence Radiation Lab. 1970.
    [28] W. Püschl, "Models for dislocation cross-slip in close-packed crystal structures: a critical review", Progress in Materials Science, Vol.47, Iss.4, pp.415-461, 2002.
    [29] G. E. Deiter and D. Bacon, Mechanical metallurgy, McGraw-Hill, 1986.
    [30] U. S. Lindholm and L. M. Yeakley, "Dynamic deformation of single and polycrystalline aluminium", Journal of the Mechanics and Physics of Solids, Vol.13, Iss.1, pp.41-53, 1965.
    [31] H. Conrad, "Thermally activated deformation of metals", JOM, Vol.16, pp.582-588, 1964.
    [32] W. Ferguson, A. Kumar, and J. Dorn, "Dislocation damping in aluminum at high strain rates", Journal of Applied Physics, Vol.38, pp.863-1869, 1967.
    [33] J. Campbell and W. Ferguson, "The temperature and strain-rate dependence of the shear strength of mild steel", Philosophical Magazine, Vol.21, pp.63-82, 1970.
    [34] J. D. Campbell, "Dynamic plasticity: macroscopic and microscopic aspects", Materials Science and Engineering, Vol. 12, pp.3-21, 1973.
    [35] J. D. Campbell and A. Dowling, "The behaviour of materials subjected to dynamic incremental shear loading", Journal of the Mechanics and Physics of Solids, Vol.18, pp.43-63, 1970.
    [36] Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp.104-124, 1992.
    [37] Z. Gronostajski, "The Constitutive Equations for FEM Analysis", Journal of Material Processing Technology, Vol.106, pp. 40-44, 2000.
    [38] L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, "A Basic Approach for Strain Rate Dependent Energy Conversion Including Heat Transfer Effects: An Experimental and Numerical Study", Journal of Material Processing Technology, Vol.182, pp.319-326, 2007.
    [39] F. J. Zerilli and R. W. Armstrong, "Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations", Journal of Applied Physics, Vol.61, pp.816-1825, 1987.
    [40] F. J. Zerilli and R. W. Armstrong, "Constitutive Equation for HCP Metals and High Strength Alloy Steels", In High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, AD-Vol.48, pp.121-126, 1995.
    [41] D. Umbrello, R. M. Saoubi and J. C. Outeiro, "The Influence of Johnson-Cook Material Constants on Finite Element Simulation of Machining of AISI 316L Steel", International Journal of Machine Tools and Manufacture, Vol.47, pp.462-470, 2007.
    [42] U. R. Andrade, M. A. Meyers and A. H. Chokshi, "Constitutive Description of Work- and Shock-Hardened Copper", Scripta Metallurgica 132et Materialia, Vol.30, No.7, pp.933-938, 1994.
    [43] W. S. Lee and T. H. Chen, "Dynamic Deformation Behavior and Microstructural Evolution of High-Strength Weldable Aluminum Scandium (Al-Sc) Alloy", Materials Transactions, Vol.49, Iss.6, pp.1284-1293, 2008.
    [44] S. Esmaeili, L. M. Cheng, A. Deschamps, D. J. Lloyd, W. J. Poole, "The Deformation Behaviour of AA6111 as a Function of Temperature and Precipitation State", Materials Science and Engineering A , Vol.319-321, pp.461-465, December 2001.
    [45] B. Viguier, "Dislocation Densities and Strain Hardening Rate in Some Intermetallic Compounds", Materials Science and Engineering A, Vol.349, pp.132-135, 2003.
    [46] D. Chu and J. W. Morris, Jr, "The Influence of Microstructure on Work Hardening in Aluminum", Acta Materialia, Vol.44, Iss.7, pp.2599-2610, 1996.
    [47] J. D. Campbell and W. G. Ferguson, "The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel", Philosophical magazine, Vol.21, pp.63-82, 1970.
    [48] S. R. Collins and G. M. Michal, "Effects of processing on the transverse fatigue properties of low-sulfur AISI 4140 Steel", Metallurgical and Materials Transactions A, Vol.24, pp.2701-2708, 1993.
    [49] U. S. Lindholm and L. M. Yeakly, "Dynamic Deformation of Single and Polycrystalline Aluminum", Journal of the Mechanics and Physics of Solids, Vol.13, pp.41-49, 1965.
    [50] L. Shi and D. O. Northwood, "The Mechanical Behavior of an AISI Type 310 Stainless Steel", Acta Metallurgica et Materialia, Vol.43, Iss.2, pp.453-460, 1995.
    [51] W. S. Lee, C. Y. Liu and B. K. Wang, "The Correction of Wave Dispersion of the Split Hopkinson Pressure Bar During Discrete Fourier Transformation", Journal of Iron Steel Institute, pp.12-13, 2003.
    [52] B. Dood and Y. Bai, "Ductile Fracture and Ductility", Academic Press Inc, London, pp.136, 1987.
    [53] R. S. Lakhkar, Y. C. Shin a, M. J. M. Krane, "Predictive Modeling of Multi-track Laser Hardening of AISI 4140 Steel", Materials Science and Engineering A, Vol.480, pp.209–217, 2008.
    [54] I. Madariaga and I. Gutierrez, "Role of the Particle±matrix Interface on the Nucleation of Acicular Ferrite in a Medium Carbon Microalloyed Steel", Acta materialia, Vol.47, Iss.3, pp.951-960, 1999.
    [55] I. Madariaga, I. Gutierrez, and H. K. D. H. Bhadeshia, "Acicular Ferrite Morphologies in a Medium-Carbon Microalloyed Steel", Metallurgical and Materials Transactions A, Vol.32, Iss.9, pp.2187-2197, 2001.
    [56] T. Yamada, H. Terasaki and Y. I. Komizo, "Lattice Misfit between Inclusion and Acicular Ferrite in Weld Metal of Carbon Low Alloy Steel", Journal of the Japan Welding Society, Vol.27, Iss.2, pp.114-117, 2009.
    [57] M. E. Backman, S. A. Schulz, J. C. Schulz and J. K. Pringle, "Scaling Rules for Adiabatic Shear", In Metallurgy Applications of Shock Wave and High-strain Rate Phenomena (eds. L. E. Murr, K. P. Staudhammer and M. A. E. Meyers), pp.675-688, Marcel Dekker Inc, New York, 1986.
    [58] R. K. Ham, "The Determination of Dislocation Densities in Thin Films", Philosophical Magazine, Vol.6, pp.1183-1184, 1961.
    [59] Y. Tomota, P. Lukas, S. Harjo, J-H. Park, N. Tsuchida, D. Neov, "In Situ Neutron Diffraction Study of IF and Ultra Low Carbon Steels upon Tensile Deformation", Acta Materialia, Vol.51, pp.819-830, 2003.
    [60] M. Radovic, E. Lara-Curzio, L. Riester, "Comparison of Different Experimental Techniques for Setermination of Elastic Properties of Solids", Materials Science and Engineering A, Vol.368, Iss.1-2, pp.56-70, 2004.
    [61] M. A. Meyers, "Dynamic Behavior of Materials", John Wiley & Sons, pp.420-426, 1994.

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE